Pabstite

Last updated
Pabstite
Pabstite.jpg
Pabstite
General
Category Cyclosilicate
Formula
(repeating unit)
Ba(Sn,Ti)Si3O9
IMA symbol Pab [1]
Strunz classification 9.CA.05
Dana classification 59.01.01.03
Crystal system Hexagonal
Crystal class Ditrigonal dipyramidal (6m2)
H-M symbol: (6 m2)
Space group P6c2
Identification
ColorColorless to white with a pink tinge
Crystal habit Granular anhedral, rare as crystals showing a trigonal outline
Mohs scale hardness6
Luster Vitreous
Specific gravity 4.03
Optical propertiesUniaxial (−)
Refractive index nω = 1.685 nε = 1.674
Birefringence δ = 0.011
Ultraviolet fluorescence Bluish white under short-wave UV
References [2] [3] [4] [5]

Pabstite is a barium tin titanium silicate mineral that is found in contact metamorphosed limestone. It belongs to the benitoite group of minerals. The chemical formula of pabstite is Ba(Sn,Ti)Si3O9. It is found in Santa Cruz, California. The crystal system of the mineral is hexagonal.

Contents

Composition

Pabstite is 37.7% SiO2, 3.8% TiO2, 24.4% SnO2 and 33.2% BaO. [6] However, Ti and Sn could vary from point to point by approximately ±0.5% TiO2 and ±1% SnO2. Pabstite is a tin bearing analog of benitoite. Although, (Sn4+ = 0.71 Å) and (Ti4+= 0.68Å) have similar charge and ionic size, it is uncommon to find them substituting each other.

Geologic occurrence

Pabstite commonly occurs as anhedral crystals and masses that vary in their color from colorless to white. [7] They produce a pink tinge when they are freshly broken. Large amounts of pabstite were found in Santa Cruz as fracture filling and disseminated grains in recrystallized siliceous limestones. [6] This is geologic evidence of contact metamorphism. In addition, pabstite can be found in Rush Creek in California when benitoite contains small amounts of tin. It is commonly occurs in rocks that contain calcite, quartz, tremolite, witherite, phlogopite, diopside, minor amounts of forsterite and taramellite. Pabstite can also be found associated with galena, cassiterite and sphalerite. [7]

Structure

Pabstite is considered the tin analog of benitoite. [6] It has a hexagonal crystal system with a P6*2C space group. Its dimensions are as follows, a= 6.7037(7), c= 9.824(1) Å3, C= 382.3(1) Å3, Z=2. Pabstite has the structure of the benitoite group of minerals. [8] In the structure of pabstite, there are four oxygens surrounding the cations in a pseudo-tetrahedral arrangement. A three-membered cyclosilicate ring (Si3O9) is formed by repeating the tetrahedron using space group symmetry. Quadrivalent cations connect the rings to form a three-dimensional framework. Since the silicate rings have a geometry that is identical in all directions, a solid rigid unit is formed in the structure. In a distorted hexagonal antiprism arrangement, Ba, which has a high symmetry, is bounded by 12 oxygens. Two different BaـــO distances are present. [M4+ Si3O9] frameworks are connected by Ba cations which lead to a poor cleavage.

Physical properties

Finding pabstite in the field is hard and rare. [7] When using a shortwave ultraviolet light, bluish white fluorescence is revealed from the specimens. This property is commonly used to identify pabstite. Pabstite is colorless to white. The diameter of pabstite grains is usually less than 2 mm and they contain minute fluid and solid inclusions. Its hardness is 6 on Mohs scale of mineral hardness. [6] Its density is 4.03 g/cm3 and it is uniaxial. The interference colors of pabstite are anomalous blue-violet and golden yellow. The refractive indices of pabstite are ω = 1.685±0.002 and ε = 1.674±0.002 which result in low birefringence and absent dichroism.

Discovery and locations

Pabstite was first described in 1965 for an occurrence in the Kalkar quarry of Santa Cruz County, California. The mineral was named for Adolf Pabst (1899–1990) a mineralogy professor at the University of California, Berkeley. [3] [5]

Pabstite has also been reported from Tres Pozos, Baja California Norte, Mexico and the Alai Range of the Tien Shan Mountains in Tajikistan. [5]

Related Research Articles

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Muscovite</span> Hydrated phyllosilicate mineral

Muscovite (also known as common mica, isinglass, or potash mica) is a hydrated phyllosilicate mineral of aluminium and potassium with formula KAl2(AlSi3O10)(F,OH)2, or (KF)2(Al2O3)3(SiO2)6(H2O). It has a highly perfect basal cleavage yielding remarkably thin laminae (sheets) which are often highly elastic. Sheets of muscovite 5 meters × 3 meters (16.5 feet × 10 feet) have been found in Nellore, India.

<span class="mw-page-title-main">Baddeleyite</span>

Baddeleyite is a rare zirconium oxide mineral (ZrO2 or zirconia), occurring in a variety of monoclinic prismatic crystal forms. It is transparent to translucent, has high indices of refraction, and ranges from colorless to yellow, green, and dark brown. See etymology below.

<span class="mw-page-title-main">Silicate mineral</span> Rock-forming minerals with predominantly silicate anions

Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust.

<span class="mw-page-title-main">Natrolite</span> Zeolite mineral

Natrolite is a tectosilicate mineral species belonging to the zeolite group. It is a hydrated sodium and aluminium silicate with the formula Na2Al2Si3O10·2H2O. The type locality is Hohentwiel, Hegau, Germany.

<span class="mw-page-title-main">Sperrylite</span>

Sperrylite is a platinum arsenide mineral with the chemical formula PtAs2 and is an opaque metallic tin white mineral which crystallizes in the isometric system with the pyrite group structure. It forms cubic, octahedral or pyritohedral crystals in addition to massive and reniform habits. It has a Mohs hardness of 6–7 and a very high specific gravity of 10.6.

<span class="mw-page-title-main">Celsian</span>

Celsian is an uncommon feldspar mineral, barium aluminosilicate, BaAl2Si2O8. The mineral occurs in contact metamorphic rocks with significant barium content. Its crystal system is monoclinic, and it is white, yellow, or transparent in appearance. In pure form, it is transparent. Synthetic barium aluminosilicate is used as a ceramic in dental fillings and other applications.

<span class="mw-page-title-main">Abenakiite-(Ce)</span> Cyclosilicate mineral

Abenakiite-(Ce) is a mineral of sodium, cerium, neodymium, lanthanum, praseodymium, thorium, samarium, oxygen, sulfur, carbon, phosphorus, and silicon with a chemical formula Na26Ce6(SiO3)6(PO4)6(CO3)6(S4+O2)O. The silicate groups may be given as the cyclic Si6O18 grouping. The mineral is named after the Abenaki, an Algonquian Indian tribe of New England. Its Mohs scale rating is 4 to 5.

<span class="mw-page-title-main">Afghanite</span> Tectosilicate mineral

Afghanite, (Na,K)22Ca10[Si24Al24O96](SO4)6Cl6, is a hydrous sodium, calcium, potassium, sulfate, chloride, carbonate alumino-silicate mineral. Afghanite is a feldspathoid of the cancrinite group and typically occurs with sodalite group minerals. It forms blue to colorless, typically massive crystals in the trigonal crystal system. The lowering of the symmetry from typical (for cancrinite group) hexagonal one is due to ordering of Si and Al. It has a Mohs hardness of 5.5 to 6 and a specific gravity of 2.55 to 2.65. It has refractive index values of nω = 1.523 and nε = 1.529. It has one direction of perfect cleavage and exhibits conchoidal fracture. It fluoresces a bright orange.

<span class="mw-page-title-main">Lawsonite</span>

Lawsonite is a hydrous calcium aluminium sorosilicate mineral with formula CaAl2Si2O7(OH)2·H2O. Lawsonite crystallizes in the orthorhombic system in prismatic, often tabular crystals. Crystal twinning is common. It forms transparent to translucent colorless, white, pink, and bluish to pinkish grey glassy to greasy crystals. Refractive indices are nα = 1.665, nβ = 1.672 – 1.676, and nγ = 1.684 – 1.686. It is typically almost colorless in thin section, but some lawsonite is pleochroic from colorless to pale yellow to pale blue, depending on orientation. The mineral has a Mohs hardness of 7.5 and a specific gravity of 3.09. It has perfect cleavage in two directions and a brittle fracture. Not to be confused with Larsonite, a fossiliferous jasper mined in Nevada.

<span class="mw-page-title-main">Osumilite</span>

Osumilite is a very rare potassium-sodium-iron-magnesium-aluminium silicate mineral. Osumilite is part of the milarite group of cyclosilicates.

Akimotoite is a rare silicate mineral in the ilmenite group of minerals, with the chemical formula (Mg,Fe)SiO3. It is polymorphous with pyroxene and with bridgmanite, a natural silicate perovskite that is the most abundant mineral in Earth's silicate mantle. Akimotoite has a vitreous luster, is colorless, and has a white or colorless streak. It crystallizes in the trigonal crystal system in space group R3. It is the silicon analogue of geikielite (MgTiO3).

<span class="mw-page-title-main">Changbaiite</span>

Changbaiite (PbNb2O6) is a member of the oxide mineral class in which the mineral contains oxygen which is grouped along with one or two metal ion. Changbaiite is classified as a multiple Oxide XY2O6 and it generally has an ionic bond. Furthermore, it is also orthorhombic at a temperature of 25 °C and it changes to orthorhombic-tetragonal at 570 °C.

<span class="mw-page-title-main">Fluor-uvite</span>

Fluor-uvite is a tourmaline mineral with the chemical formula CaMg3(Al5Mg)(Si6O18)(BO3)3(OH)3F. It is a rare mineral that is found in calcium rich contact metamorphic rocks with increased amounts of boron. Uvite is trigonal hexagonal, which means that it has three equal length axes at 120 degrees, all perpendicular to its fourth axis which has a different length. Uvite is part of the space group 3m. Uvite's hardness has been measured to be 7.5 on the Mohs hardness scale. The color of uvite widely varies, depending on the sample, but is mostly deep green or brown. In regard to uvite's optical properties, it is uniaxial (-) and anisotropic, meaning that the velocity of light in the mineral depends on the path that it takes. In plane polarized light, uvite is colorless to pale yellow and shows weak pleochroism.

<span class="mw-page-title-main">Delafossite</span> Copper iron oxide mineral

Delafossite is a copper iron oxide mineral with formula CuFeO2 or Cu1+Fe3+O2. It is a member of the delafossite mineral group, which has the general formula ABO2, a group characterized by sheets of linearly coordinated A cations stacked between edge-shared octahedral layers (BO6). Delafossite, along with other minerals of the ABO2 group, is known for its wide range of electrical properties, its conductivity varying from insulating to metallic. Delafossite is usually a secondary mineral that crystallizes in association with oxidized copper and rarely occurs as a primary mineral.

<span class="mw-page-title-main">Ferronigerite-2N1S</span>

Ferronigerite-2N1S is an iron, tin, alumino-hydroxide mineral that naturally occurs around sillimanite-quartz veins. Ferronigerite-2N1S belongs to the nigerite group, högbomite supergroup. The other constituents of the nigerite group are ferronigerite-6N6S, magnesionigerite-2N1S, magnesionigerite-6N6S, zinconigerite-2N1S and zinconigerite-6N6S. The 2N1S ending stands for the nolanite and spinel structural layers.

Farneseite is a mineral from the cancrinite sodalite group with 14 layer stacking. It is a complex silicate mineral with formula (Na,Ca,K)56(Al6Si6O24)7(SO4)12·6H2O. It was named after a location in Farnese, Lazio, Italy. It is a member of the cancrinite-sodalite group, approved in 2004 as a new mineral species. The group is characterized by the number of stacking layers making up each member, with farneseite being one of newest minerals in the group with a 14 layer stacking structure. It is a clear transparent mineral and has a hexagonal crystal system with crystal class of 6/m and space group of P63/m. The specimens discovered in Farnese were in a pyroclastic rock from the Làtera Cauldera region.

<span class="mw-page-title-main">Ikranite</span> Mineral member of the eudialyte group

Ikranite is a member of the eudialyte group, named after the Shubinov Institute of Crystallography of the Russian Academy of Sciences. It is a cyclosilicate mineral that shows trigonal symmetry with the space group R3m, and is often seen with a pseudo-hexagonal habit. Ikranite appears as translucent and ranges in color from yellow to a brownish yellow. This mineral ranks a 5 on Mohs scale of mineral hardness, though it is considered brittle, exhibiting conchoidal fracture when broken.

<span class="mw-page-title-main">Tumchaite</span>

Tumchaite, Na2(Zr,Sn)Si4O11·H2O, is a colorless to white monoclinic phyllosilicate mineral. It is associated with calcite, dolomite, and pyrite in the late dolomite-calcite carbonatites. It can be transparent to translucent; has a vitreous luster; and has perfect cleavage on {100}. Its hardness is 4.5, between fluorite and apatite. Tumchaite is isotypic with penkvilksite. The structure of the mineral is identified by silicate sheets parallel {100}, formed by alternation of clockwise and counterclockwise growing spiral chains of corner-sharing SiO4 tetrahedra. Tumchaite is named for the river Tumcha near Vuoriyarvi massif.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43.
  2. Mineralienatlas
  3. 1 2 http://rruff.geo.arizona.edu/doclib/hom/pabstite.pdf Handbook of Mineralogy
  4. http://webmineral.com/data/Pabstite.shtml Webmineral data
  5. 1 2 3 http://www.mindat.org/min-3057.html Mindat
  6. 1 2 3 4 Wainwright, John E. N & Evans, Bernard W. (1965). "Pabstite,1 the tin analogue of benitoite." The American Mineralogist, 50, 1164–1169.
  7. 1 2 3 Dunning, G. E & Cooper, J. F. Jr. (1986). "Mineralogy of the Kalkar Quarry, Santa Cruz, California." Mineralogical Record, 17, 315- 326.
  8. Hawthorne, Frank C. (1987). The crystal chemistry of the benitoite group minerals and structural relations in (Si3O9) ring structures. Neues Jahrbuch fuer Mineralogie. Monatshefte. 1987, 16–30.