Papiliotrema laurentii

Last updated

Papiliotrema laurentii
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Tremellomycetes
Order: Tremellales
Family: Rhynchogastremaceae
Genus: Papiliotrema
Species:
P. laurentii
Binomial name
Papiliotrema laurentii
(Kuff.) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout (2015)
Synonyms

Torula laurentiiKuff (1920)
Cryptococcus laurentii(Kuff) Lodder (1934)

Papiliotrema laurentii (synonym Cryptococcus laurentii) is a species of fungus in the family Rhynchogastremaceae. It is typically isolated in its yeast state.

In its yeast state, it is a rare human pathogen, able to provoke a skin condition, [1] or fungemia in immunocompromised hosts. [2]

It can also be used as sole source of food for the rearing of Caenorhabditis elegans . [3]

Related Research Articles

<i>Caenorhabditis elegans</i> Free-living species of nematode

Caenorhabditis elegans is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek caeno- (recent), rhabditis (rod-like) and Latin elegans (elegant). In 1900, Maupas initially named it Rhabditides elegans. Osche placed it in the subgenus Caenorhabditis in 1952, and in 1955, Dougherty raised Caenorhabditis to the status of genus.

<i>Cryptococcus</i> Genus of fungi

Cryptococcus is a genus of fungi in the family Cryptococcaceae that includes both yeasts and filamentous species. The filamentous, sexual forms or teleomorphs were formerly classified in the genus Filobasidiella, while Cryptococcus was reserved for the yeasts. Most yeast species formerly referred to Cryptococcus have now been placed in different genera. The name Cryptococcus comes from the Greek for "hidden sphere". Some Cryptococcus species cause a disease called cryptococcosis.

<i>Cryptococcus neoformans</i> Species of yeast

Cryptococcus neoformans is an encapsulated yeast belonging to the class Tremellomycetes and an obligate aerobe that can live in both plants and animals. Its teleomorph is a filamentous fungus, formerly referred to Filobasidiella neoformans. In its yeast state, it is often found in bird excrement. Cryptococcus neoformans can cause disease in apparently immunocompetent, as well as immunocompromised, hosts.

<span class="mw-page-title-main">COQ7</span> Protein-coding gene in humans

Mitochondrial 5-demethoxyubiquinone hydroxylase, also known as coenzyme Q7, hydroxylase, is an enzyme that in humans is encoded by the COQ7 gene. The clk-1 (clock-1) gene encodes this protein that is necessary for ubiquinone biosynthesis in the worm Caenorhabditis elegans and other eukaryotes. The mouse version of the gene is called mclk-1 and the human, fruit fly and yeast homolog COQ7.

<span class="mw-page-title-main">Fungemia</span> Internal, blood-borne infection by fungi, including yeasts.

Fungemia is the presence of fungi or yeasts in the blood. The most common type, also known as candidemia, candedemia, or systemic candidiasis, is caused by Candida species; candidemia is also among the most common bloodstream infections of any kind. Infections by other fungi, including Saccharomyces, Aspergillus and Cryptococcus, are also called fungemia. It is most commonly seen in immunosuppressed or immunocompromised patients with severe neutropenia, cancer patients, or in patients with intravenous catheters. It has been suggested that otherwise immunocompetent patients taking infliximab may also be at a higher risk for fungemia.

Cdc25 is a dual-specificity phosphatase first isolated from the yeast Schizosaccharomyces pombe as a cell cycle defective mutant. As with other cell cycle proteins or genes such as Cdc2 and Cdc4, the "cdc" in its name refers to "cell division cycle". Dual-specificity phosphatases are considered a sub-class of protein tyrosine phosphatases. By removing inhibitory phosphate residues from target cyclin-dependent kinases (Cdks), Cdc25 proteins control entry into and progression through various phases of the cell cycle, including mitosis and S ("Synthesis") phase.

<span class="mw-page-title-main">UPF1</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 1 is a protein that in humans is encoded by the UPF1 gene.

<span class="mw-page-title-main">STXBP5</span> Protein-coding gene in the species Homo sapiens

Syntaxin-binding protein 5 is a protein that in humans is encoded by the STXBP5 gene. It is also known as tomosyn, after , "friend" in Japanese, for its role as a binding protein.

Gary Bruce Ruvkun is an American molecular biologist at Massachusetts General Hospital and professor of genetics at Harvard Medical School in Boston. Ruvkun discovered the mechanism by which lin-4, the first microRNA (miRNA) discovered by Victor Ambros, regulates the translation of target messenger RNAs via imperfect base-pairing to those targets, and discovered the second miRNA, let-7, and that it is conserved across animal phylogeny, including in humans. These miRNA discoveries revealed a new world of RNA regulation at an unprecedented small size scale, and the mechanism of that regulation. Ruvkun also discovered many features of insulin-like signaling in the regulation of aging and metabolism. He was elected a Member of the American Philosophical Society in 2019.

Papiliotrema is a genus of fungi in the family Rhynchogastremaceae. Filamentous states, where known, form septate basidia with haustorial cells indicating they are parasites of other fungi. Most species are currently known only from their yeast states. More than 20 species have been referred to Papiliotrema.

<span class="mw-page-title-main">Daf-16</span> Ortholog

DAF-16 is the sole ortholog of the FOXO family of transcription factors in the nematode Caenorhabditis elegans. It is responsible for activating genes involved in longevity, lipogenesis, heat shock survival and oxidative stress responses. It also protects C.elegans during food deprivation, causing it to transform into a hibernation - like state, known as a Dauer. DAF-16 is notable for being the primary transcription factor required for the profound lifespan extension observed upon mutation of the insulin-like receptor DAF-2. The gene has played a large role in research into longevity and the insulin signalling pathway as it is located in C. elegans, a successful ageing model organism.

<span class="mw-page-title-main">BZIP intron RNA motif</span>

The bZIP intron RNA motif is an RNA structure guiding splicing of a non-canonical intron from bZIP-containing genes called HAC1 in yeast, XBP1 in Metazoa, Hxl1 or Cib1 in Basidiomycota and bZIP60 in plants. Splicing is performed independently of the spliceosome by Ire1, a kinase with endoribonuclease activity. Exons are joined by a tRNA ligase. Recognition of the intron splice sites is mediated by a base-paired secondary structure of the mRNA that forms at the exon/intron boundaries. Splicing of the bZIP intron is a key regulatory step in the unfolded protein response (UPR). The Ire-mediated unconventional splicing was first described for HAC1 in S. cerevisiae.

<span class="mw-page-title-main">Genetics of aging</span> Overview of the genetics of aging

Genetics of aging is generally concerned with life extension associated with genetic alterations, rather than with accelerated aging diseases leading to reduction in lifespan.

Alison Woollard is a British biologist. She is a lecturer in the Department of Biochemistry at the University of Oxford where she is also a Fellow of Hertford College, Oxford.

Host microbe interactions in <i>Caenorhabditis elegans</i>

Caenorhabditis elegans- microbe interactions are defined as any interaction that encompasses the association with microbes that temporarily or permanently live in or on the nematode C. elegans. The microbes can engage in a commensal, mutualistic or pathogenic interaction with the host. These include bacterial, viral, unicellular eukaryotic, and fungal interactions. In nature C. elegans harbours a diverse set of microbes. In contrast, C. elegans strains that are cultivated in laboratories for research purposes have lost the natural associated microbial communities and are commonly maintained on a single bacterial strain, Escherichia coli OP50. However, E. coli OP50 does not allow for reverse genetic screens because RNAi libraries have only been generated in strain HT115. This limits the ability to study bacterial effects on host phenotypes. The host microbe interactions of C. elegans are closely studied because of their orthologs in humans. Therefore, the better we understand the host interactions of C. elegans the better we can understand the host interactions within the human body.

Tc1/mariner is a class and superfamily of interspersed repeats DNA transposons. The elements of this class are found in all animals, including humans. They can also be found in protists and bacteria.

<span class="mw-page-title-main">William Schafer</span> American geneticist

William Ronald Schafer is a neuroscientist and geneticist who has made important contributions to understanding the molecular and neural basis of behaviour. His work, principally in the nematode C. elegans, has used an interdisciplinary approach to investigate how small groups of neurons generate behavior, and he has pioneered methodological approaches, including optogenetic neuroimaging and automated behavioural phenotyping, that have been widely influential in the broader neuroscience field. He has made significant discoveries on the functional properties of ionotropic receptors in sensory transduction and on the roles of gap junctions and extrasynaptic modulation in neuronal microcircuits. More recently, he has applied theoretical ideas from network science and control theory to investigate the structure and function of simple neuronal connectomes, with the goal of understanding conserved computational principles in larger brains. He is an EMBO member, Welcome Investigator and Fellow of the Academy of Medical Sciences.

Susan Strome is a Distinguished Professor of Molecular, Cell, and Developmental Biology at the University of California Santa Cruz. Strome received a B.A. degree in chemistry from University of New Mexico and a Ph.D. in biochemistry from the University of Washington, as well as post-graduate work at the University of Colorado Boulder. Strome is a member of the American Academy of Arts and Sciences and the National Academy of Sciences.

Paul W. Sternberg is an American biologist. He does research for WormBase on C. elegans, a model organism.

Pseudotremella is a genus of fungi in the family Bulleraceae. All Pseudotremella species are parasites of other fungi and produce anamorphic yeast states. Basidiocarps, when produced, are gelatinous and are colloquially classed among the "jelly fungi". Four species of Pseudotremella are currently recognized worldwide. Two of these species are, as yet, only known from their yeast states.

References

  1. Cutaneous Cryptococcus laurentii infection in an immunocompetent child. Alejandro Molina-Leyva, Jose C. Ruiz-Carrascosa, Ana Leyva-Garcia and Husein Husein-Elahmed, International Journal of Infectious Diseases, Volume 17, Issue 12, December 2013, Pages e1232-e1233, doi : 10.1016/j.ijid.2013.04.017
  2. Cryptococcus laurentii fungemia. Banerjee P, Haider M, Trehan V, Mishra B, Thakur A, Dogra V and Loomba P, Indian J Med Microbiol. 2013 Jan-Mar;31(1):75-7, doi : 10.4103/0255-0857.108731
  3. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Eleftherios Mylonakis, Frederick M. Ausubel, John R. Perfect, Joseph Heitman and Stephen B. Calderwood, PNAS 2002 November, 99 (24) 15675-15680, doi : 10.1073/pnas.232568599