Pasteuria ramosa

Last updated

Pasteuria ramosa
Daphnia magna infected with the Pasteuria ramosa.jpg
Daphnia magna infected with Pasteuria ramosa
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
P. ramosa
Binomial name
Pasteuria ramosa [1]

Pasteuria ramosa is a gram-positive, endospore-forming bacterium in the Bacillus/Clostridia clade within Bacillota. It is an obligate pathogen of cladoceran crustaceans from the genus Daphnia . [2] Daphnia is a genus of small planktonic crustaceans including D. magna , P. ramosa's most popular host target. Other hosts include D. pulex , D. longispina , D. dentifera , and Moina rectirostris . An established and widely used coevolutionary model of host-pathogen interactions exists with P. ramosa and D. magna. [3] [4]

Contents

Growth and sporulation

Endospores of P. ramosa Pasteuria ramosa endospores.jpg
Endospores of P. ramosa

P. ramosa is an obligate pathogen and it can only grow inside its host. Transmission between hosts takes place through the endospore stage, and is strictly horizontal. [2] These endospores are highly resistant to different environmental stresses, including freezing temperatures, and can remain in the environment for decades without any deleterious effects. The infection can be explained in 5 steps: (1.) Encounter (2.) Activation (3.) Attachment (4.) Proliferation and (5.) Termination. [5] The process starts when a Daphnia has ingested a spore of P. ramosa during filter feeding. The spore receives a signal to begin germination, and attaches to the host esophagus. The pathogen then enters the body cavity of the host by penetrating the esophagus wall. Once inside the body cavity, the bacterium begins to propagate in cauliflower like colonies. Propagation of spores is usually observed in the haemocoel and musculature. [5] After the infection has spread throughout the host, the bacterium begins to sporulate. The spores are shed into the environment from the dead host and can remain in the sediment for decades while maintaining their infectivity. [5] Additionally, these spores may be ingested by their immune hosts and pass through the gut of the Daphnia unharmed by any immune cells. This makes the spores very difficult to kill. [6]

Pathogenicity

The infection success of P. ramosa depends on its ability to attach to the host esophagus and to spread into its body cavity where the propagation of the pathogen takes place. Propagation of the spores take place over a period of 10-20 days and ultimately leads to death of the infected host and the release of millions of created spores into the surrounding area. [7] The attachment step of the infection depends on the genotypes of the host and the bacterium, meaning that only certain host genotypes can be infected by certain strains of the bacterium. [5] [8] Although the process through which the genotypic interactions occur is unclear, environmental factors, such as temperature, play a large role in the castration of Daphnia. Studies have shown that female Daphnia are sterilized at warmer temperatures (20–25 °C (68–77 °F)), but still have the ability to reproduce at lower temperatures (10–15 °C (50–59 °F)). [9] This difference in temperatures can be observed in different seasons and can lead to a high amount of variability between Daphnia, a crucial part of its ability to coevolve with P. ramosa. During P. ramosa infection, the size of the Daphnia increases significantly. This phenomenon is known as pathogen-induced gigantism. In addition, the lifespan of the host is significantly reduced. [2]

Coevolutionary model with Daphnia magna

P. ramosa has coevolved with its host Daphnia magna. The mode of coevolution in this system fits the model with negative frequency-dependent selection where the rare genotype is favored since the more common host genotype is more likely to become the target of a specialized pathogen. [3] [4] [10]

Taxonomy

A culture established by James T. Staley, ATCC 27377T, was previously considered to be the neotype for this species, but has been reassigned to Pirellula staleyi Schlesner and Hirsch, 1987 [11] because it did not conform to Metchnikoff's original description of Pasteuria ramosa. [12]

Related Research Articles

<span class="mw-page-title-main">Endospore</span> Protective structure formed by bacteria

An endospore is a dormant, tough, and non-reproductive structure produced by some bacteria in the phylum Bacillota. The name "endospore" is suggestive of a spore or seed-like form, but it is not a true spore. It is a stripped-down, dormant form to which the bacterium can reduce itself. Endospore formation is usually triggered by a lack of nutrients, and usually occurs in gram-positive bacteria. In endospore formation, the bacterium divides within its cell wall, and one side then engulfs the other. Endospores enable bacteria to lie dormant for extended periods, even centuries. There are many reports of spores remaining viable over 10,000 years, and revival of spores millions of years old has been claimed. There is one report of viable spores of Bacillus marismortui in salt crystals approximately 25 million years old. When the environment becomes more favorable, the endospore can reactivate itself into a vegetative state. Most types of bacteria cannot change to the endospore form. Examples of bacterial species that can form endospores include Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Clostridium botulinum, and Clostridium tetani. Endospore formation is not found among Archaea.

<i>Daphnia</i> Genus of crustaceans

Daphnia is a genus of small planktonic crustaceans, 0.2–6.0 mm (0.01–0.24 in) in length. Daphnia are members of the order Anomopoda, and are one of the several small aquatic crustaceans commonly called water fleas because their saltatory swimming style resembles the movements of fleas. Daphnia spp. live in various aquatic environments ranging from acidic swamps to freshwater lakes and ponds.

In evolutionary biology, an evolutionary arms race is an ongoing struggle between competing sets of co-evolving genes, phenotypic and behavioral traits that develop escalating adaptations and counter-adaptations against each other, resembling the geopolitical concept of an arms race. These are often described as examples of positive feedback. The co-evolving gene sets may be in different species, as in an evolutionary arms race between a predator species and its prey, or a parasite and its host. Alternatively, the arms race may be between members of the same species, as in the manipulation/sales resistance model of communication or as in runaway evolution or Red Queen effects. One example of an evolutionary arms race is in sexual conflict between the sexes, often described with the term Fisherian runaway. Thierry Lodé emphasized the role of such antagonistic interactions in evolution leading to character displacements and antagonistic coevolution.

The Red Queen hypothesis is a hypothesis in evolutionary biology proposed in 1973, that species must constantly adapt, evolve, and proliferate in order to survive while pitted against ever-evolving opposing species. The hypothesis was intended to explain the constant (age-independent) extinction probability as observed in the paleontological record caused by co-evolution between competing species; however, it has also been suggested that the Red Queen hypothesis explains the advantage of sexual reproduction at the level of individuals, and the positive correlation between speciation and extinction rates in most higher taxa.

<i>Thielaviopsis basicola</i> Species of fungus

Thielaviopsis basicola is the plant-pathogen fungus responsible for black root rot disease. This particular disease has a large host range, affecting woody ornamentals, herbaceous ornamentals, agronomic crops, and even vegetable crops. Examples of susceptible hosts include petunia, pansy, poinsettia, tobacco, cotton, carrot, lettuce, tomato, and others. Symptoms of this disease resemble nutrient deficiency but are truly a result of the decaying root systems of plants. Common symptoms include chlorotic lower foliage, yellowing of plant, stunting or wilting, and black lesions along the roots. The lesions along the roots may appear red at first, getting darker and turning black as the disease progresses. Black root lesions that begin in the middle of a root can also spread further along the roots in either direction. Due to the nature of the pathogen, the disease can easily be identified by the black lesions along the roots, especially when compared to healthy roots. The black lesions that appear along the roots are a result of the formation of chlamydospores, resting spores of the fungus that contribute to its pathogenicity. The chlamydospores are a dark brown-black color and cause the "discoloration" of the roots when they are produced in large amounts.

<i>Evolution of Infectious Disease</i>

Evolution of Infectious Disease is a 1993 book by the evolutionary biologist Paul W. Ewald. In this book, Ewald contests the traditional view that parasites should evolve toward benign coexistence with their hosts. He draws on various studies that contradict this dogma and asserts his theory based on fundamental evolutionary principles. This book provides one of the first in-depth presentations of insights from evolutionary biology on various fields in health science, including epidemiology and medicine.

<i>Schistocephalus solidus</i> Species of flatworm

Schistocephalus solidus is a tapeworm of fish, fish-eating birds and rodents. This hermaphroditic parasite belongs to the Eucestoda subclass, of class Cestoda. This species has been used to demonstrate that cross-fertilization produces a higher infective success rate than self-fertilization.

<i>Bacillus anthracis</i> Species of bacterium

Bacillus anthracis is a gram-positive and rod-shaped bacterium that causes anthrax, a deadly disease to livestock and, occasionally, to humans. It is the only permanent (obligate) pathogen within the genus Bacillus. Its infection is a type of zoonosis, as it is transmitted from animals to humans. It was discovered by a German physician Robert Koch in 1876, and became the first bacterium to be experimentally shown as a pathogen. The discovery was also the first scientific evidence for the germ theory of diseases.

Dermocystidium is a genus of cyst-forming, eukaryotic fish parasites, the causative agents of dermocystidiosis.

<i>Daphnia magna</i> Species of small freshwater animal

Daphnia magna is a small planktonic crustacean that belongs to the subclass Phyllopoda.

Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.

Nosema bombi is a microsporidian, a small, unicellular parasite recently reclassified as a fungus that mainly affects bumble bees. It was reclassified as Vairimorpha bombi in 2020. The parasite infects numerous Bombus spp. at variable rates, and has been found to have a range of deleterious effects on its hosts.

<span class="mw-page-title-main">Pasteuriaceae</span> Family of bacteria

The Pasteuriaceae are a family of nonmotile Gram-positive bacteria. They are moderately to strongly resistant to heat. Species in this family produce a septate mycelium with one refractile endospore. The mycelium grows bigger on one end to form sporangia and sometimes endospores. The size of the endospores is different for each species of the genus Pasteuria. Species of the family of Pastueriaceae are endoparasitic in plant, soil, and freshwater invertebrates.

Pasteuria is a genus of mycelial and endospore-forming, nonmotile gram-positive bacteria that are obligate parasites of some nematodes and crustaceans. The genus of Pasteuria was previously classified within the family Alicyclobacillaceae, but has since been moved to the family Pasteuriaceae.

Pasteuria nishizawae is a mycelial and endospore-forming bacterium parasitic on cyst nematodes of genera Heterodera and Globodera.

Host microbe interactions in <i>Caenorhabditis elegans</i>

Caenorhabditis elegans- microbe interactions are defined as any interaction that encompasses the association with microbes that temporarily or permanently live in or on the nematode C. elegans. The microbes can engage in a commensal, mutualistic or pathogenic interaction with the host. These include bacterial, viral, unicellular eukaryotic, and fungal interactions. In nature C. elegans harbours a diverse set of microbes. In contrast, C. elegans strains that are cultivated in laboratories for research purposes have lost the natural associated microbial communities and are commonly maintained on a single bacterial strain, Escherichia coli OP50. However, E. coli OP50 does not allow for reverse genetic screens because RNAi libraries have only been generated in strain HT115. This limits the ability to study bacterial effects on host phenotypes. The host microbe interactions of C. elegans are closely studied because of their orthologs in humans. Therefore, the better we understand the host interactions of C. elegans the better we can understand the host interactions within the human body.

<i>Ordospora colligata</i> Intracellular parasite

Ordospora colligata is an intracellular parasite belonging to the Microsporidia. It is an obligatory gut parasite with the crustacean Daphnia magna as its only host. So far it has been reported from Europe and Asia.

<i>Hamiltosporidium</i> Genus of fungi

Hamiltosporidium is a genus of Microsporidia, which are intracellular and unicellular parasites. The genus, proposed by Haag et al. in 2010, contains two species; Hamiltosporidium tvaerminnensis, and Hamiltosporidium magnivora. Both species infect only the crustacean Daphnia magna (Waterflea).

<span class="mw-page-title-main">Gene-for-gene interactions in rust fungi</span>

The study of gene-for-gene interactions uncovers genetic components, evolutionary impacts, and ecological/economic implications between rust fungi and plants. Rust fungi utilize the gene-for-gene interaction to invade host plants. Conversely, host plants utilize the gene-for-gene interaction to prevent invasion of rust fungi.

<span class="mw-page-title-main">Dieter Ebert</span>

Dieter Ebert is professor for Zoology and Evolutionary Biology at the Zoological Institute at the University of Basel in Basel, Switzerland. He is an evolutionary ecologist and geneticist, known for his research on host–pathogen interaction and coevolution, mainly using the model system Daphnia and its parasites.

References

  1. "Pasteuria ramosa Metchnikoff, 1888". Global Biodiversity Information Facility . Retrieved 10 February 2023.
  2. 1 2 3 Ebert, D.; Rainey, P.; Embley, T. M.; Scholz, D. (1996). "Development, life cycle, ultrastructure and phylogenetic position of Pasteuria ramosa Metchnikoff 1888: rediscovery of an obligate endoparasite of Daphnia magna Straus". Philosophical Transactions of the Royal Society of London B. 351 (1348): 1689–1701. doi:10.1098/rstb.1996.0151.
  3. 1 2 Carius, H. J.; Little; Ebert, D. (2001). "Genetic variation in a host-parasite association: Potential for coevolution and frequency-dependent selection". Evolution. 55 (6): 1136–1145. doi:10.1111/j.0014-3820.2001.tb00633.x. PMID   11475049. S2CID   35183797.
  4. 1 2 Ebert, D. (2008). "Host-parasite coevolution: Insights from the Daphnia-parasite model system". Current Opinion in Microbiology. 11 (3): 290–301. doi:10.1016/j.mib.2008.05.012. PMID   18556238.
  5. 1 2 3 4 Duneau, D.; Luijckx, P.; Ben-Ami, F.; Laforsch, C.; Ebert, D. (2011). "Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions". BMC Biology. 9: 11. doi: 10.1186/1741-7007-9-11 . PMC   3052238 . PMID   21342515.
  6. King, K. C., Stuart, K. J. R. A., Wilson, P. J., James, J., & Little, T. J. (2013). "The bacterial parasite Pasteuria ramosa is not killed if it fails to infect: Implications for coevolution." Ecology and Evolution, 3(2), 197–203. doi : 10.1002/ece3.438.
  7. Auld, S. K. J. R., Graham, A. L., Wilson, P. J., & Little, T. J. (2012). "Elevated haemocyte number is associated with infection and low fitness potential in wild Daphnia magna." Functional Ecology. 26(2):434–440. doi : 10.1111/j.1365-2435.2011.01959.x.
  8. Luijckx, P.; Ben-Ami, F.; Mouton, L.; Du Pasquier, L.; Ebert, D. (2011). "Cloning of the unculturable parasite Pasteuria ramosa and its Daphnia host reveals extreme genotype-genotype interactions". Ecology Letters. 14 (2): 125–131. doi:10.1111/j.1461-0248.2010.01561.x. PMID   21091597.
  9. Mitchell, S.E.; Rogers, E.S.; Little, T.J.; Read, A.F. (2005). "Host-parasite and genotype-by-environment interactions: Temperature modifies potential for selection by a sterilizing pathogen". Evolution. 59 (1): 70–80. doi: 10.1111/j.0014-3820.2005.tb00895.x . PMID   15792228.
  10. Decaestecker, Ellen; Vergote, Adelien; Ebert, Dieter; De Meester, Luc (2003-04-01). "Evidence for strong host clone-parasite species interactions in the Daphnia microparasite system". Evolution; International Journal of Organic Evolution. 57 (4): 784–792. doi: 10.1111/j.0014-3820.2003.tb00290.x . ISSN   0014-3820. PMID   12778548. S2CID   1626602.
  11. Clum A, Tindall BJ, Sikorski J, Ivanova N, Mavrommatis K, Lucas S, et al. (2009). "Complete genome sequence of Pirellula staleyi type strain (ATCC 27377T)". Standards in Genomic Sciences. 1 (3): 308–316. doi: 10.4056/sigs.51657 . PMC   3035237 . PMID   21304671.
  12. Judicial Commission of the International Committee on Systematic Bacteriology (1986). "Opinion 61: Rejection of the Type Strain of Pasteuria ramosa (ATCC 27377) and Conservation of the Species Pasteuria ramosa Metchnikoff 1888 on the Basis of the Type Descriptive Material". International Journal of Systematic and Evolutionary Microbiology. 36 (1): 119. doi: 10.1099/00207713-36-1-119 .