Pasteuria

Last updated

Pasteuria
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Pasteuria

Metchnikoff 1888
Type species
Pasteuria ramosa
Metchnikoff 1888
Species
  • "Ca P. aldrichii"
  • "P. goettingianae"
  • "P. hartismeri"
  • P. nishizawae
  • P. penetrans
  • P. ramosa
  • P. thornei
  • "Ca P. usgae"

Pasteuria is a genus of mycelial and endospore-forming, nonmotile gram-positive bacteria that are obligate parasites of some nematodes and crustaceans. [1] The genus of Pasteuria was previously classified within the family Alicyclobacillaceae, [2] but has since been moved to the family Pasteuriaceae. [3]

Contents

Steps of infection

Animals that are susceptible to Pasteuria become infected when they are exposed to spores in soil or water. Therefore, Pasteuria are transmitted horizontally between hosts and when an infected host dies, it releases spores to the soil or sediment. The likelihood of infections is related to the spore density in the environment and can be affected by temperature. [4] After contact with the host, Pasteuria spores are activated, attach to their host, penetrate the host's cuticle, proliferate within the host, and kill the host. [5] In water fleas, the ability of the spore to successfully attach during the infection process is related to the genotype of the host and the parasite. [6] Spore cells that do not infect animals and pass through a resistant host can still remain viable and infectious. [7]

Effects of parasite

Following infection with Pasteuria, the parasite interferes with the reproduction of their female hosts. Hosts can live with the parasite for a prolonged period of time after infection. [8] In Daphnia , P. ramosa induces gigantism. [9] P. penetrans parasitized females of the nematode Meloidogyne javanica, on the other hand, were smaller than healthy individuals. [4]

Potential as biocontrol

Due to the effect of Pasteuria on reproduction, especially on nematode pests of important crops, there is an interest to develop Pasteuria as a biological control agent. [10] In 2012, Syngenta acquired a company named Pateuria Bioscience to commercialize Pasteuria as a biological control. [11] In 2013, Syngenta launched CLARIVA™ pn, which has the active ingredient of Pasteuria nishizawae to combat the soybean cyst nematode. [12] The effectiveness of Pasteuria as a biocontrol may depend on the biotypes of the nematode host that are present since they can vary in their susceptibility to Pasteuria. [13]

Species of Pasteuria and their hosts

Currently, four species of Pasteuria and two candidate species are described, all of which are obligate parasites with specific hosts. The described species and their hosts include:

Candidate species and their hosts include:

Additional species of Pasteuria have been named but are yet to be formally described, including:

See also

Related Research Articles

<i>Strongyloides stercoralis</i> Species of worm

Strongyloides stercoralis is a human pathogenic parasitic roundworm causing the disease strongyloidiasis. Its common name in the US is threadworm. In the UK and Australia, however, the term threadworm can also refer to nematodes of the genus Enterobius, otherwise known as pinworms.

<i>Daphnia</i> Genus of crustaceans

Daphnia is a genus of small planktonic crustaceans, 0.2–6.0 mm (0.01–0.24 in) in length. Daphnia are members of the order Anomopoda, and are one of the several small aquatic crustaceans commonly called water fleas because their saltatory swimming style resembles the movements of fleas. Daphnia spp. live in various aquatic environments ranging from acidic swamps to freshwater lakes and ponds.

<span class="mw-page-title-main">Root-knot nematode</span> Genus of parasitic worms

Root-knot nematodes are plant-parasitic nematodes from the genus Meloidogyne. They exist in soil in areas with hot climates or short winters. About 2000 plants worldwide are susceptible to infection by root-knot nematodes and they cause approximately 5% of global crop loss. Root-knot nematode larvae infect plant roots, causing the development of root-knot galls that drain the plant's photosynthate and nutrients. Infection of young plants may be lethal, while infection of mature plants causes decreased yield.

<i>Radopholus similis</i> Species of roundworm

Radopholus similis is a species of nematode known commonly as the burrowing nematode. It is a parasite of plants, and it is a pest of many agricultural crops. It is an especially important pest of bananas, and it can be found on coconut, avocado, coffee, sugarcane, other grasses, and ornamentals. It is a migratory endoparasite of roots, causing lesions that form cankers. Infected plants experience malnutrition.

<i>Meloidogyne incognita</i> Nematode worm, plant disease, many hosts

Meloidogyne incognita, also known as the southern root-nematode or cotton root-knot nematode is a plant-parasitic roundworm in the family Heteroderidae. This nematode is one of the four most common species worldwide and has numerous hosts. It typically incites large, usually irregular galls on roots as a result of parasitism.

<i>Pratylenchus penetrans</i> Species of roundworm

Pratylenchus penetrans is a species of nematode in the genus Pratylenchus, the lesion nematodes. It occurs in temperate regions worldwide, regions between the subtropics and the polar circles. It is an animal that inhabits the roots of a wide variety of plants and results in necrotic lesions on the roots. Symptoms of P. penetrans make it hard to distinguish from other plant pathogens; only an assay of soil can conclusively diagnose a nematode problem in the field. P. penetrans is physically very similar to other nematode species, but is characterized by its highly distinctive mouthpiece. P. penetrans uses its highly modified mouth organs to rupture the outer surface of subterranean plant root structures. It will then enter into the root interior and feed on the plant tissue inside. P. penetrans is considered to be a crop parasite and farmers will often treat their soil with various pesticides in an attempt to eliminate the damage caused by an infestation. In doing this, farmers will also eliminate many of the beneficial soil fauna, which will lead to an overall degradation of soil quality in the future. Alternative, more environmentally sustainable methods to control P. penetrans populations may be possible in certain regions.

There are many plant-parasitic species in the root-knot nematode genus (Meloidogyne) that attack coffee such as M. incognita, M. arenaria, M. exigua, M. javanica and M. coffeicola. Study has already shown interspecific variability coffee, in which show how this species can be adapting to new hosts and environments.

<span class="mw-page-title-main">Nematophagous fungus</span> Carnivorous fungi specialized in trapping and digesting nematodes

Nematophagous fungi are carnivorous fungi specialized in trapping and digesting nematodes. Around 160 species are known. There exist both species that live inside the nematodes from the beginning and others that catch them, mostly with glue traps or in rings, some of which constrict on contact. Some species possess both types of traps. Another technique is to stun the nematodes using toxins, which is a method employed by Coprinus comatus, Stropharia rugosoannulata, and the family Pleurotaceae. The habit of feeding on nematodes has arisen many times among fungi, as is demonstrated by the fact that nematophagous species are found in all major fungal groups. Nematophagous fungi can be useful in controlling those nematodes that eat crops. Purpureocillium, for example, can be used as a bio-nematicide.

<span class="mw-page-title-main">Nematode</span> Phylum of worms with tubular digestive systems with openings at both ends

The nematodes, roundworms or eelworms constitute the phylum Nematoda. They are a diverse animal phylum inhabiting a broad range of environments. Most species are free-living, feeding on microorganisms, but there are many that are parasitic. The parasitic worms (helminths) are the cause of soil-transmitted helminthiases.

Dermocystidium is a genus of cyst-forming, eukaryotic fish parasites, the causative agents of dermocystidiosis.

Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.

<i>Purpureocillium lilacinum</i> Species of fungus

Purpureocillium lilacinum is a species of filamentous fungus in the family Ophiocordycipitaceae. It has been isolated from a wide range of habitats, including cultivated and uncultivated soils, forests, grassland, deserts, estuarine sediments and sewage sludge, and insects. It has also been found in nematode eggs, and occasionally from females of root-knot and cyst nematodes. In addition, it has frequently been detected in the rhizosphere of many crops. The species can grow at a wide range of temperatures – from 8 to 38 °C for a few isolates, with optimal growth in the range 26 to 30 °C. It also has a wide pH tolerance and can grow on a variety of substrates. P. lilacinum has shown promising results for use as a biocontrol agent to control the growth of destructive root-knot nematodes.

Eustrongylidosis is a parasitic disease that mainly affects wading birds worldwide; however, the parasite's complex, indirect lifecycle involves other species, such as aquatic worms and fish. Moreover, this disease is zoonotic, which means the parasite can transmit disease from animals to humans. Eustrongylidosis is named after the causative agent Eustrongylides, and typically occurs in eutrophicated waters where concentrations of nutrients and minerals are high enough to provide ideal conditions for the parasite to thrive and persist. Because eutrophication has become a common issue due to agricultural runoff and urban development, cases of eustrongylidosis are becoming prevalent and hard to control. Eustrongylidosis can be diagnosed before or after death by observing behavior and clinical signs, and performing fecal flotations and necropsies. Methods to control it include preventing eutrophication and providing hosts with uninfected food sources in aquaculture farms. Parasites are known to be indicators of environmental health and stability, so should be studied further to better understand the parasite's lifecycle and how it affects predator-prey interactions and improve conservation efforts.

<span class="mw-page-title-main">Pasteuriaceae</span> Family of bacteria

The Pasteuriaceae are a family of nonmotile Gram-positive bacteria. They are moderately to strongly resistant to heat. Species in this family produce a septate mycelium with one refractile endospore. The mycelium grows bigger on one end to form sporangia and sometimes endospores. The size of the endospores is different for each species of the genus Pasteuria. Species of the family of Pastueriaceae are endoparasitic in plant, soil, and freshwater invertebrates.

Pasteuria nishizawae is a mycelial and endospore-forming bacterium parasitic on cyst nematodes of genera Heterodera and Globodera.

<i>Ordospora colligata</i> Intracellular parasite

Ordospora colligata is an intracellular parasite belonging to the Microsporidia. It is an obligatory gut parasite with the crustacean Daphnia magna as its only host. So far it has been reported from Europe and Asia.

<span class="mw-page-title-main">Pasteuria ramosa</span> Species of bacterium

Pasteuria ramosa is a gram-positive, endospore-forming bacterium in the Bacillus/Clostridia clade within Bacillota. It is an obligate pathogen of cladoceran crustaceans from the genus Daphnia. Daphnia is a genus of small planktonic crustaceans including D. magna, P. ramosa's most popular host target. Other hosts include D. pulex, D. longispina, D. dentifera, and Moina rectirostris. An established and widely used coevolutionary model of host-pathogen interactions exists with P. ramosa and D. magna.

<i>Hamiltosporidium</i> Genus of fungi

Hamiltosporidium is a genus of Microsporidia, which are intracellular and unicellular parasites. The genus, proposed by Haag et al. in 2010, contains two species; Hamiltosporidium tvaerminnensis, and Hamiltosporidium magnivora. Both species infect only the crustacean Daphnia magna (Waterflea).

<i>Steinernema carpocapsae</i> Species of roundworm

Steinernema carpocapsae is an entomopathogenic nematode and a member of the family Steinernematidae. It is a parasitic roundworm that has evolved an insect-killing symbiosis with bacteria, and kills its hosts within a few days of infection. This parasite releases its bacterial symbiont along with a variety of proteins into the host after infection, and together the bacteria and nematode overcome host immunity and kill the host quickly. As a consequence, S. carpocapsae has been widely adapted for use as a biological control agent in agriculture and pest control. S. carpocapsae is considered a generalist parasite and has been effectively used to control a variety of insects including: Webworms, cutworms, armyworms, girdlers, some weevils, and wood-borers. This species is an example of an "ambush" forager, standing on its tail in an upright position near the soil surface and attaching to passing hosts, even capable of jumping. As an ambush forager, S. carpocapsae is thought to be especially effective when applied against highly mobile surface-adapted insects. S. carpocapsae can sense carbon dioxide production, making the spiracles a key portal of entry into its insect hosts. It is most effective at temperatures ranging from 22–28 °C (72–82 °F).

<span class="mw-page-title-main">Dieter Ebert</span>

Dieter Ebert is professor for Zoology and Evolutionary Biology at the Zoological Institute at the University of Basel in Basel, Switzerland. He is an evolutionary ecologist and geneticist, known for his research on host–pathogen interaction and coevolution, mainly using the model system Daphnia and its parasites.

References

  1. Stackebrandt, Erko (2014). "The Family Pasteuriaceae". In Rosenberg, Eugene; DeLong, Edward F.; Lory, Stephen; Stackebrandt, Erko; Thompson, Fabiano (eds.). The Prokaryotes. Springer Berlin Heidelberg. pp. 281–284. doi:10.1007/978-3-642-30120-9_347. ISBN   9783642301193.
  2. Preston, J. F.; Dickson, D. W.; Maruniak, J. E.; Nong, G.; Brito, J. A.; Schmidt, L. M.; Giblin-Davis, R. M. (2003). "Pasteuria spp.: Systematics and Phylogeny of These Bacterial Parasites of Phytopathogenic Nematodes". Journal of Nematology. 35 (2): 198–207. ISSN   0022-300X. PMC   2620627 . PMID   19265995.
  3. Vos, P; Garrity, G; Jones, D; Krieg, N.R.; Ludwig, W; Rainey, F.A.; Schleifer, K.-H.; Whitman, W.B. (2009). "The Firmicutes". Bergey's Manual of Systematic Bacteriology - Springer. doi:10.1007/978-0-387-68489-5. ISBN   978-0-387-95041-9.
  4. 1 2 Hatz, B.; Dickson, D. W. (1992). "Effect of Temperature on Attachment, Development, and Interactions of Pasteuria penetrans on Meloidogyne incognita". Journal of Nematology. 24 (4): 512–521. ISSN   0022-300X. PMC   2619314 . PMID   19283029.
  5. Duneau, David; Luijckx, Pepijn; Ben-Ami, Frida; Laforsch, Christian; Ebert, Dieter (2011). "Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions". BMC Biology. 9 (1): 11. doi: 10.1186/1741-7007-9-11 . PMC   3052238 . PMID   21342515.
  6. Luijckx, Pepijn; Duneau, David; Andras, Jason P.; Ebert, Dieter (2014). "Cross-Species Infection Trials Reveal Cryptic Parasite Varieties and a Putative Polymorphism Shared Among Host Species". Evolution. 68 (2): 577–586. doi: 10.1111/evo.12289 . ISSN   1558-5646. PMID   24116675. S2CID   6083589.
  7. King, Kayla C; Auld, Stuart K J R; Wilson, Philip J; James, Janna; Little, Tom J (2013). "The bacterial parasite Pasteuria ramosa is not killed if it fails to infect: implications for coevolution". Ecology and Evolution. 3 (2): 197–203. doi:10.1002/ece3.438. ISSN   2045-7758. PMC   3586630 . PMID   23467806.
  8. Ebert, D. (2005). Ecology, epidemiology and evolution of parasitism in Daphnia. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda (MD). ISBN   978-1-932811-06-3.
  9. Cressler, Clayton E.; Nelson, William A.; Day, Troy; McCauley, Edward (2014). "Starvation reveals the cause of infection-induced castration and gigantism". Proceedings of the Royal Society of London B: Biological Sciences. 281 (1792): 20141087. doi:10.1098/rspb.2014.1087. ISSN   0962-8452. PMC   4150321 . PMID   25143034.
  10. Davies, K. G.; Rowe, J. A.; Williamson, V. M. (2008). "Inter- and intra-specific cuticle variation between amphimictic and parthenogenetic species of root-knot nematode (Meloidogyne spp.) as revealed by a bacterial parasite (Pasteuria penetrans)". International Journal for Parasitology. 38 (7): 851–859. doi:10.1016/j.ijpara.2007.11.007. PMID   18171577.
  11. "Syngenta to acquire Pasteuria Bioscience". www.syngenta.com. Archived from the original on 2016-04-24. Retrieved 2016-04-08.
  12. "CLARIVA". www.syngenta.com. Archived from the original on 2016-04-24. Retrieved 2016-04-08.
  13. Tzortzakakis, E. A.; De. R. Channer, A. G.; Gowen, S. R.; Ahmed, R. (1997). "Studies on the potential use of Pasteuria penetrans as a biocontrol agent of root-knot nematodes (Meloidogyne spp.)". Plant Pathology. 46 (1): 44–55. doi: 10.1046/j.1365-3059.1997.d01-211.x . ISSN   1365-3059.
  14. Sayre, R. M; Wergin, W. P; Schmidt, J. M; Starr, M. P (1991). "Pasteuria nishizawae sp. nov., a mycelial and endospore-forming bacterium parasitic on cyst nematodes of genera Heterodera and Globodera". Research in Microbiology. 142 (5): 551–564. doi:10.1016/0923-2508(91)90188-G. PMID   1947427.
  15. 1 2 Starr, M. P.; Sayre, R. M. (1988). "Pasteuria thornei sp. nov. and Pasteuria penetrans sensu stricto emend., mycelial and endospore-forming bacteria parasitic, respectively, on plant-parasitic nematodes of the genera Pratylenchus and Meloidogyne". Annales de l'Institut Pasteur / Microbiologie. 139 (1): 11–31. doi:10.1016/0769-2609(88)90094-4. PMID   3382544.
  16. Metchnikoff, M.E. (1888). "Pasteuria ramosa un représentant des bactéries à division longitudinale". Ann. Inst. Pasteur: 165–170.
  17. 1 2 Giblin-Davis, R. M.; Nong, G.; Preston, J. F.; Williams, D. S.; Center, B. J.; Brito, J. A.; Dickson, D. W. (2011). "'Candidatus Pasteuria aldrichii', an obligate endoparasite of the bacterivorous nematode Bursilla". International Journal of Systematic and Evolutionary Microbiology. 61 (9): 2073–2080. doi: 10.1099/ijs.0.021287-0 . PMID   20870891.
  18. Bishop, Alistair H.; Gowen, Simon R.; Pembroke, Barbara; Trotter, James R. (2007). "Morphological and molecular characteristics of a new species of Pasteuria parasitic on Meloidogyne ardenensis". Journal of Invertebrate Pathology. 96 (1): 28–33. doi:10.1016/j.jip.2007.02.008. PMID   17399736.