Pauling's rules are five rules published by Linus Pauling in 1929 for predicting and rationalizing the crystal structures of ionic compounds. [1] [2]
For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron. The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio (or ) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions. [2] : 524 [3]
For the coordination numbers and corresponding polyhedra in the table below, Pauling mathematically derived the minimum radius ratio for which the cation is in contact with the given number of anions (considering the ions as rigid spheres). If the cation is smaller, it will not be in contact with the anions which results in instability leading to a lower coordination number.
C.N. | Polyhedron | Radius ratio |
---|---|---|
3 | triangular | 0.155 |
4 | tetrahedron | 0.225 |
6 | octahedron | 0.414 |
7 | capped octahedron | 0.592 |
8 | square antiprism (anticube) | 0.645 |
8 | cube | 0.732 |
9 | triaugmented triangular prism | 0.732 |
12 | cuboctahedron | 1.00 |
The three diagrams at right correspond to octahedral coordination with a coordination number of six: four anions in the plane of the diagrams, and two (not shown) above and below this plane. The central diagram shows the minimal radius ratio. The cation and any two anions form a right triangle, with , or . Then . Similar geometrical proofs yield the minimum radius ratios for the highly symmetrical cases C.N. = 3, 4 and 8. [4]
For C.N. = 6 and a radius ratio greater than the minimum, the crystal is more stable since the cation is still in contact with six anions, but the anions are further from each other so that their mutual repulsion is reduced. An octahedron may then form with a radius ratio greater than or equal to 0.414, but as the ratio rises above 0.732, a cubic geometry becomes more stable. This explains why Na+ in NaCl with a radius ratio of 0.55 has octahedral coordination, whereas Cs+ in CsCl with a radius ratio of 0.93 has cubic coordination. [5]
If the radius ratio is less than the minimum, two anions will tend to depart and the remaining four will rearrange into a tetrahedral geometry where they are all in contact with the cation.
The radius ratio rules are a first approximation which have some success in predicting coordination numbers, but many exceptions do exist. [3] In a set of over 5000 oxides, only 66% of coordination environments agree with Pauling's first rule. Oxides formed with alkali or alkali-earth metal cations that contain multiple cation coordinations are common deviations from this rule. [6]
For a given cation, Pauling defined [2] the electrostatic bond strength to each coordinated anion as , where z is the cation charge and ν is the cation coordination number. A stable ionic structure is arranged to preserve local electroneutrality, so that the sum of the strengths of the electrostatic bonds to an anion equals the charge on that anion.
where is the anion charge and the summation is over the adjacent cations. For simple solids, the are equal for all cations coordinated to a given anion, so that the anion coordination number is the anion charge divided by each electrostatic bond strength. Some examples are given in the table.
Cation | Radius ratio | Cation C.N. | Electrostatic bond strength | Anion C.N. |
---|---|---|---|---|
Li+ | 0.34 | 4 | 0.25 | 8 |
Mg2+ | 0.47 | 6 | 0.33 | 6 |
Sc3+ | 0.60 | 6 | 0.5 | 4 |
Pauling showed that this rule is useful in limiting the possible structures to consider for more complex crystals such as the aluminosilicate mineral orthoclase, KAlSi3O8, with three different cations. [2] However, from data analysis of oxides from the Inorganic Crystal Structure Database (ICSD), the result showed that only 20% of all oxygen atoms matched with the prediction from second rule (using a cutoff of 0.01). [6]
The sharing of edges and particularly faces by two anion polyhedra decreases the stability of an ionic structure. Sharing of corners does not decrease stability as much, so (for example) octahedra may share corners with one another. [2] : 559
The decrease in stability is due to the fact that sharing edges and faces places cations in closer proximity to each other, so that cation-cation electrostatic repulsion is increased. The effect is largest for cations with high charge and low C.N. (especially when r+/r- approaches the lower limit of the polyhedral stability). Generally, smaller elements fulfill the rule better. [6]
As one example, Pauling considered the three mineral forms of titanium dioxide, each with a coordination number of 6 for the Ti4+ cations. The most stable (and most abundant) form is rutile, in which the coordination octahedra are arranged so that each one shares only two edges (and no faces) with adjoining octahedra. The other two, less stable, forms are brookite and anatase, in which each octahedron shares three and four edges respectively with adjoining octahedra. [2] : 559
In a crystal containing different cations, those of high valency and small coordination number tend not to share polyhedron elements with one another. [2] : 561 This rule tends to increase the distance between highly charged cations, so as to reduce the electrostatic repulsion between them.
One of Pauling's examples is olivine, M2SiO4, where M is a mixture of Mg2+ at some sites and Fe2+ at others. The structure contains distinct SiO4 tetrahedra which do not share any oxygens (at corners, edges or faces) with each other. The lower-valence Mg2+ and Fe2+ cations are surrounded by polyhedra which do share oxygens.
The number of essentially different kinds of constituents in a crystal tends to be small. [2] The repeating units will tend to be identical because each atom in the structure is most stable in a specific environment. There may be two or three types of polyhedra, such as tetrahedra or octahedra, but there will not be many different types.
In a study of 5000 oxides, only 13% of them satisfy all of the last 4 rules, indicating limited universality of Pauling's rules. [6]
A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing of electrons as in covalent bonds. The strength of chemical bonds varies considerably; there are "strong bonds" or "primary bonds" such as covalent, ionic and metallic bonds, and "weak bonds" or "secondary bonds" such as dipole–dipole interactions, the London dispersion force, and hydrogen bonding.
Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compounds. It is one of the main types of bonding, along with covalent bonding and metallic bonding. Ions are atoms with an electrostatic charge. Atoms that gain electrons make negatively charged ions. Atoms that lose electrons make positively charged ions. This transfer of electrons is known as electrovalence in contrast to covalence. In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be more complex, e.g. molecular ions like NH+
4 or SO2−
4. In simpler words, an ionic bond results from the transfer of electrons from a metal to a non-metal to obtain a full valence shell for both atoms.
In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and biochemistry, the distinction from ions is dropped and molecule is often used when referring to polyatomic ions.
In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.
In chemistry, an ionic compound is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding. The compound is neutral overall, but consists of positively charged ions called cations and negatively charged ions called anions. These can be simple ions such as the sodium (Na+) and chloride (Cl−) in sodium chloride, or polyatomic species such as the ammonium (NH+
4) and carbonate (CO2−
3) ions in ammonium carbonate. Individual ions within an ionic compound usually have multiple nearest neighbours, so are not considered to be part of molecules, but instead part of a continuous three-dimensional network. Ionic compounds usually form crystalline structures when solid.
In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.
An oxyanion, or oxoanion, is an ion with the generic formula A
xOz−
y. Oxyanions are formed by a large majority of the chemical elements. The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H
zA
xO
y. The structures of condensed oxyanions can be rationalized in terms of AOn polyhedral units with sharing of corners or edges between polyhedra. The oxyanions adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) are important in biology.
The Madelung constant is used in determining the electrostatic potential of a single ion in a crystal by approximating the ions by point charges. It is named after Erwin Madelung, a German physicist.
Ionic radius, rion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice. Ionic radii are typically given in units of either picometers (pm) or angstroms (Å), with 1 Å = 100 pm. Typical values range from 31 pm (0.3 Å) to over 200 pm (2 Å).
An anisodesmic crystal is a crystal containing bonds with differing electrostatic valencies. An example is anhydrite. All other crystals are known as isodesmic crystals and examples include diamond and halite. These terms are of particular importance when discussing the structural chemistry of minerals.
In geometry, the midsphere or intersphere of a convex polyhedron is a sphere which is tangent to every edge of the polyhedron. Not every polyhedron has a midsphere, but the uniform polyhedra, including the regular, quasiregular and semiregular polyhedra and their duals all have midspheres. The radius of the midsphere is called the midradius. A polyhedron that has a midsphere is said to be midscribed about this sphere.
The bond valencemethod or mean method is a popular method in coordination chemistry to estimate the oxidation states of atoms. It is derived from the bond valence model, which is a simple yet robust model for validating chemical structures with localized bonds or used to predict some of their properties. This model is a development of Pauling's rules.
In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion/molecule/atom is called a ligand. This number is determined somewhat differently for molecules than for crystals.
In geometry, the Waterman polyhedra are a family of polyhedra discovered around 1990 by the mathematician Steve Waterman. A Waterman polyhedron is created by packing spheres according to the cubic close(st) packing (CCP), also known as the face-centered cubic (fcc) packing, then sweeping away the spheres that are farther from the center than a defined radius, then creating the convex hull of the sphere centers.
The Keggin structure is the best known structural form for heteropoly acids. It is the structural form of α-Keggin anions, which have a general formula of [XM12O40]n−, where X is the heteroatom, M is the addendum atom, and O represents oxygen. The structure self-assembles in acidic aqueous solution and is a commonly used type of polyoxometalate catalysts.
In condensed matter physics and inorganic chemistry, the cation-anion radius ratio can be used to predict the crystal structure of an ionic compound based on the relative size of its atoms. It is defined as the ratio of the ionic radius of the positively charged cation to the ionic radius of the negatively charged anion in a cation-anion compound. Anions are larger than cations. Large sized anions occupy lattice sites, while small sized cations are found in voids. In a given structure, the ratio of cation radius to anion radius is called the radius ratio. This is simply given by .
Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula CaTiO3). Its name is also applied to the class of compounds which have the same type of crystal structure as CaTiO3, known as the perovskite structure, which has a general chemical formula A2+B4+(X2−)3. Many different cations can be embedded in this structure, allowing the development of diverse engineered materials.
A metal ion in aqueous solution or aqua ion is a cation, dissolved in water, of chemical formula [M(H2O)n]z+. The solvation number, n, determined by a variety of experimental methods is 4 for Li+ and Be2+ and 6 for most elements in periods 3 and 4 of the periodic table. Lanthanide and actinide aqua ions have higher solvation numbers (often 8 to 9), with the highest known being 11 for Ac3+. The strength of the bonds between the metal ion and water molecules in the primary solvation shell increases with the electrical charge, z, on the metal ion and decreases as its ionic radius, r, increases. Aqua ions are subject to hydrolysis. The logarithm of the first hydrolysis constant is proportional to z2/r for most aqua ions.
Pauling's principle of electroneutrality states that each atom in a stable substance has a charge close to zero. It was formulated by Linus Pauling in 1948 and later revised. The principle has been used to predict which of a set of molecular resonance structures would be the most significant, to explain the stability of inorganic complexes and to explain the existence of π-bonding in compounds and polyatomic anions containing silicon, phosphorus or sulfur bonded to oxygen; it is still invoked in the context of coordination complexes. However, modern computational techniques indicate many stable compounds have a greater charge distribution than the principle predicts.