This article is part of a series on |
Alternative medicine |
---|
Vitamin C megadosage is a term describing the consumption or injection of vitamin C (ascorbic acid) in doses well beyond the current United States Recommended Dietary Allowance of 90 milligrams per day, and often well beyond the tolerable upper intake level of 2,000 milligrams per day. [1] There is no strong scientific evidence that vitamin C megadosage helps to cure or prevent cancer, the common cold, or some other medical conditions. [2] [3]
Historical advocates of vitamin C megadosage include Linus Pauling, who won the Nobel Prize in Chemistry in 1954. Pauling argued that because humans and other primates lack a functional form of L-gulonolactone oxidase, an enzyme required to make vitamin C that is functional in almost all other mammals, plants, insects, and other life forms, humans have developed a number of adaptations to cope with the relative deficiency. These adaptations, he argued, ultimately shortened lifespan but could be reversed or mitigated by supplementing humans with the hypothetical amount of vitamin C that would have been produced in the body if the enzyme were working.
Vitamin C megadoses are claimed by alternative medicine advocates including Matthias Rath and Patrick Holford to have preventive and curative effects on diseases such as cancer and AIDS, [4] but the available scientific evidence does not support these claims. [3] Some trials show some effect in combination with other therapies, but this does not imply vitamin C megadoses in themselves have any therapeutic effect. [5]
Vitamin C is an essential nutrient used in the production of collagen and other biomolecules, and for the prevention of scurvy. [6] It is also an antioxidant, which has led to its endorsement by some researchers as a complementary therapy for improving quality of life. [7] Certain animal species, including the haplorhine primates (which include humans), [8] [9] members of the Caviidae family of rodents (including guinea pigs and capybaras), [10] most species of bats, [11] many passerine birds, [12] and about 96% of fish (the teleosts), [12] cannot synthesize vitamin C internally and must therefore rely on external sources, typically obtained from food.
For humans, the World Health Organization recommends a daily intake of 45 mg/day of vitamin C for healthy adults, and 25–30 mg/day in infants. [13]
Since its discovery, vitamin C has been considered almost a panacea by some, [14] although this led to suspicions of it being overhyped by others. [15] Vitamin C has long been promoted in alternative medicine as a treatment for the common cold, cancer, polio, and various other illnesses. The evidence for these claims is mixed. Since the 1930s, when it first became available in pure form, some physicians have experimented with higher-than-recommended vitamin C consumption or injection. [16] Orthomolecular-based megadose recommendations for vitamin C are based mainly on theoretical speculation and observational studies, such as those published by Ferd R. Klenner from the 1940s through the 1970s. There is a strong advocacy movement for very high doses of vitamin C, yet there is an absence of large-scale, formal trials in the 10 to 200+ grams per day range.
The single repeatable side effect of oral megadose vitamin C is a mild laxative effect if the practitioner attempts to consume too much too quickly. In the United States and Canada, a tolerable upper intake level (UL) was set at 2,000 mg/day, citing this mild laxative effect as the reason for establishing the UL. [1] However, the European Food Safety Authority (EFSA) reviewed the safety question in 2006 and reached the conclusion that there was not sufficient evidence to set a UL for vitamin C. [17] The Japan National Institute of Health and Nutrition reviewed the same question in 2010 and also reached the conclusion that there was not sufficient evidence to set a UL. [18]
About 70–90% of vitamin C is absorbed by the body when taken orally at normal levels (30–180 mg daily). Only about 50% is absorbed from daily doses of 1 gram (1,000 mg). Even oral administration of megadoses of 3g every four hours cannot raise blood concentration above 220 micromol/L. [19]
Humans and other species that cannot synthesize their own vitamin C carry a mutated and ineffective form of the enzyme L-gulonolactone oxidase, the fourth and last step in the ascorbate-producing machinery. In the anthropoids lineage, this mutation likely occurred 40 to 25 million years ago. [20] The three surviving enzymes continue to produce the precursors to vitamin C, but the absence of the fourth enzyme means the process is never completed, and the body ultimately disassembles the precursors.
In the 1960s, the Nobel Prize–winning chemist Linus Pauling, after contact with Irwin Stone, [21] began actively promoting vitamin C as a means to greatly improve human health and resistance to disease. His book How to Live Longer and Feel Better was a bestseller and advocated taking more than 10 grams per day orally, thus approaching the amounts released by the liver directly into the circulation in other mammals: an adult goat, a typical example of a vitamin C–producing animal, will manufacture more than 13,000 mg of vitamin C per day in normal health and much more when stressed.[ citation needed ]
Matthias Rath is a controversial German physician who worked with and published two articles discussing the possible relationship between lipoprotein and vitamin C with Pauling. [22] [23] He is an active proponent and publicist for high-dose vitamin C. Pauling's and Rath's extended theory states that deaths from scurvy in humans during the Pleistocene, when vitamin C was scarce, selected for individuals who could repair arteries with a layer of cholesterol provided by lipoprotein(a), a lipoprotein found in vitamin C-deficient species. [24]
Stone [25] and Pauling [8] believed that the optimum daily requirement of vitamin C is around 2,300 milligrams for a human requiring 2,500 kcal per day. For comparison, the FDA's recommended daily allowance of vitamin C is only 90 milligrams. [1]
Although sometimes considered free of toxicity, there are known side effects from vitamin C intake, and it has been suggested that intravenous injections should require "a medical environment and trained professionals." [26]
For example, a genetic condition that results in inadequate levels of the enzyme glucose-6-phosphate dehydrogenase (G6PD) can cause affected people to develop hemolytic anemia after using intravenous vitamin C treatment. [27] The G6PD deficiency test is a common laboratory test.
Because oxalic acid is produced during metabolism of vitamin C, hyperoxaluria can be caused by intravenous administration of ascorbic acid. [26] Vitamin C administration may also acidify the urine and could promote the precipitation of kidney stones or drugs in the urine. [26]
Although vitamin C can be well tolerated at doses well above what government organizations recommend, adverse effects can occur at doses above 3 grams per day. The common "threshold" side effect of megadoses is diarrhea caused by oral consumption of vitamin C in such doses. Other possible adverse effects regardless of the mode of administration include increased oxalate excretion and kidney stones, increased uric acid excretion, systemic conditioning ("rebound scurvy"), preoxidant effects, iron overload, reduced absorption of vitamin B12 and copper, increased oxygen demand, and acid erosion of the teeth when chewing vitamin C tablets. [1] In addition, one woman received a kidney transplant followed by high-dose vitamin C and died soon afterward as a result of calcium oxalate deposits that destroyed her new kidney. Her doctors concluded that high-dose vitamin C therapy should be avoided in patients with kidney failure. [28]
As discussed previously, vitamin C generally exhibits low toxicity. The LD50 (the dose that will kill 50% of a population) is generally accepted to be 11,900 milligrams (11.9 grams) per kilogram in rat populations. [29] The American Association of Poison Control Centers has reported zero deaths from vitamin C toxicity in 2018. [30]
Pharmaceuticals designed to reduce stomach acid, such as the proton-pump inhibitors (PPIs), are among the most widely sold drugs in the world. One PPI, omeprazole (Prilosec), has been found to lower the bioavailability of vitamin C by 12% after 28 days of treatment, independent of dietary intake. The probable mechanism of vitamin C reduction, intragastric pH elevated into alkalinity, would apply to all other PPI drugs, though not necessarily to doses of PPIs low enough to keep the stomach slightly acidic. [31] In another study, 40 mg/day of omeprazole lowered the fasting gastric vitamin C levels from 3.8 to 0.7 μg/mL. [32] Aspirin may also inhibit the absorption of vitamin C. [33] [34]
Regulations in most countries limit the claims regarding treatment of disease that can be placed on food and dietary-supplement product labels. For example, claims of therapeutic effect with respect to the treatment of any medical condition or disease are prohibited by the United States Food and Drug Administration even if the substance in question has gone through well-conducted clinical trials with positive outcomes. Claims are limited to "structure and function" phrasing (like "helps maintain a healthy immune system") and the following notice is mandatory on food and dietary-supplement product labels that make these types of health claims: "These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease." [35]
The use of vitamin C in high doses as a treatment for cancer was promoted by Linus Pauling, based on a 1976 study published with Ewan Cameron which reported intravenous vitamin C significantly increased lifespans of patients with advanced cancer. [36] [2] This trial was criticized by the National Cancer Institute for being designed poorly, and three subsequent trials conducted at the Mayo Clinic could not replicate the results. [2] [37]
Preliminary clinical trials in humans have shown that it is unlikely to be a "miracle pill" for cancer and more research is necessary before any definitive conclusions about efficacy can be reached. [26] A 2010 review of 33 years of research on vitamin C to treat cancer stated "we have to conclude that we still do not know whether Vitamin C has any clinically significant antitumor activity. Nor do we know which histological types of cancers, if any, are susceptible to this agent. Finally, we don't know what the recommended dose of Vitamin C is, if there is indeed such a dose, that can produce an anti-tumor response." [37] Recent studies show that vitamin C has the potential to be a potent anti-cancer agent when administered intravenously and in high doses (high-dose IVC), but these are primary research studies not confirmed by other researchers. [38] [39]
The American Cancer Society has stated, "Although high doses of vitamin C have been suggested as a cancer treatment, the available evidence from clinical trials has not shown any benefit." [2]
One clinical trial used high intravenous doses of vitamin C (66 mg/kg/hour for 24 hours, for a total dose of around 110 grams) after severe burn injury, [40] but despite being described as promising, it has not been replicated by independent institutions and thus is not a widely accepted treatment. [41] Based on that study, the American Burn Association (ABA) considers high-dose ascorbic acid an option to be considered for adjuvant therapy in addition to the more accepted standard treatments. [42]
Atrial fibrillation (AF) is a common cardiac rhythm disturbance associated with oxidative stress. Four meta-analyses have concluded that there is strong evidence that consuming 1–2 g/day of vitamin C before and after cardiac operations can decrease the risk of post-operative AF. [43] [44] [45] [46] However, five randomized studies did not find any such benefit in the United States, so that the benefit was restricted to less wealthy countries. [46] [47]
Exercise-induced bronchoconstriction (EIB) indicates acute narrowing of the airways as a result of vigorous exercise. EIB seems to be caused by the loss of water caused by increased ventilation, which may lead to the release of mediators such as histamine, prostaglandins, and leukotrienes, all of which cause bronchoconstriction. Vitamin C participates in the metabolism of these mediators and might thereby influence EIB. [48] A meta-analysis showed that 0.5 to 2 g/day of vitamin C before exercise decreased EIB by half, but these findings were based on 3 trials of small groups, with one study being inconclusive, and all studies having 40 participants in total, and were not confirmed by any larger study. [49]
A meta-analysis showed a significant positive effect of vitamin C on endothelial function. Benefit was found of vitamin C in doses ranging from 0.5 to 4 g/day, whereas lower doses from 0.09 to 0.5 g/day were not effective. No effect on endothelial function was seen in healthy volunteers or healthy smokers. [50]
A frequently cited meta-analysis calculated that various doses of vitamin C, all greater than 0.2 g, did not prevent the common cold in the general community, although 0.25 to 1 g/day of vitamin C halved the incidence of colds in people under heavy short-term physical stress. [51] Another meta-analysis calculated that, in children, 1–2 g/day vitamin C shortened the duration of colds by 18%, and in adults 1–4 g/day vitamin C shortened the duration of colds by 8%. [51] There is evidence of higher doses being more effective on common cold duration up to 6–8 g/day. [52] The cited studies of larger daily doses of vitamin C do not take into account the fast excretion rate of vitamin C at gram-level doses, which makes it necessary to give the total daily amount in smaller, more frequent doses to maintain higher plasma levels. [53]
There is no good evidence that vitamin C is of benefit for treating or preventing gout and its use for this purpose is not recommended by the American College of Rheumatology. [54]
While earlier, preliminary studies predicted promising results on high-dose vitamin C administration (intravenously) in COVID-19 patients, [55] these results were not confirmed by later studies. [56] [57] Systematic reviews and meta‐analysis of randomized controlled trials of intravenous administration of high doses of vitamin C (such as 12 g, every 12 hours for 7 days) in mild, moderate, severe, and critically ill COVID-19 patients concluded that vitamin C administration did not influence disease severity or mortality in comparison with a control group who took placebo. [58] [59] [60] Although there was benefit observed in some small studies, this benefit was no better than that of placebo; therefore, the usefulness of vitamin C administration in COVID-19 patients was not confirmed by large-scale randomized trials. [61] [62] [63] [64] Intravenous vitamin C administration was widely used in 2020 for treating critically ill COVID-19 patients in China, but 2024 meta-analysis of these studies found that vitamin C supplementation did not reduce death rates in COVID-19 patients compared to those receiving standard care, and total hospital stay was not decreased; however, the rate of adverse effects in patients who received vitamin C was the same as in control groups that didn't receive vitamin C. [65]
The practice of vitamin C megadosage has been influenced by various social and cultural factors, such as the popularity of alternative medicine, the media coverage of scientific controversies, and the personal testimonies of celebrities and public figures, rather than scientific medial research. [66] [67] One of the most influential proponents of vitamin C megadosage was Linus Pauling, a renowned chemist and Nobel laureate. In 1954 he won the Prize for Chemistry. Eight years later he was awarded the Peace Prize for his opposition to weapons of mass destruction. [68] [69] Linus Pauling advocated for the use of vitamin C to prevent and treat various diseases, especially the common cold and cancer. [70] [71] [72] Still, the arguments given in these books were not based on solid peer-reviewed medical research. Pauling published several books and articles on the topic, such as Vitamin C and the Common Cold (1970) and Vitamin C and Cancer (1979). [73] [74] [75] [76] These publications attracted a large public attention and stimulated a scientific debate. [77] [78] [79] [80] Pauling also claimed that he personally took up to 18 grams of vitamin C per day and attributed his longevity and health to this practice. [81] [74] [76] Pauling's views were challenged by many mainstream medical experts, who argued that there was no convincing evidence to support his claims and that his methodology was flawed and biased. Pauling died of prostate cancer in 1994 at the age of 93. [82] [83] [84]
Another prominent figure in the vitamin C megadosage movement was Matthias Rath, a German physician and researcher, who collaborated with Pauling in the 1980s and 1990s. [85] [86] Rath proposed that vitamin C and other micronutrients could prevent and cure cardiovascular diseases, AIDS, and cancer, by strengthening the immune system and inhibiting the spread of infections and tumors. [87] Rath also founded the Rath Foundation, a non-profit organization that promotes his ideas and products, and the Dr. Rath Research Institute, a scientific facility that conducts research on micronutrients and health. [88] Rath has been criticized by the medical community and the media for making unsubstantiated and misleading claims, for exploiting the AIDS epidemic in South Africa, and for opposing the use of antiretroviral drugs. [87] Rath has also been involved in several legal disputes and controversies, such as suing the British Medical Journal for defamation, and being banned from selling his products in several countries. [89]
Vitamin C megadosage has also been endorsed by some celebrities and public figures, who have shared their personal experiences and opinions on the subject. [90] For example, the actor Steve McQueen, who was diagnosed with terminal mesothelioma in 1979, sought treatment from William Donald Kelley, a dentist and alternative medicine practitioner, who prescribed him a regimen of vitamin C injections, coffee enemas, and dietary supplements. McQueen claimed that his condition improved after following Kelley's protocol, but he died of a heart attack in 1980 after undergoing surgery in Mexico. [91] The singer-songwriter John Lennon, who was a friend and admirer of Pauling, also reportedly took large doses of vitamin C and advocated for its benefits. [92] The actress Gwyneth Paltrow, who is known for her lifestyle brand Goop, which promotes various alternative health and wellness products and practices, has also expressed her support for vitamin C megadosage, stating that she takes up to 15 grams of vitamin C per day to boost her immunity and energy. [93]
The public interest and awareness of vitamin C megadosage has been influenced by the media coverage of the scientific research and controversies on the topic, as well as the marketing and advertising of vitamin C products and services. The media has often portrayed vitamin C megadosage as a controversial, but potentially effective and harmless, alternative to conventional medicine, especially for the treatment of the common cold and cancer. The media has also reported on the personal stories and opinions of the advocates and critics of vitamin C megadosage, as well as the legal and ethical issues involved in the practice. The marketing and advertising of vitamin C products and services, such as supplements, injections, infusions, and creams, has also contributed to the popularity and demand of vitamin C megadosage, by emphasizing its purported benefits and safety, and by appealing to the consumers' emotions and values. However, some of these products and services may not be regulated or approved by the relevant authorities, and may not have sufficient evidence or quality to support their claims. [67] [94]
Ascorbic acid is an organic compound with formula C
6H
8O
6, originally called hexuronic acid. It is a white solid, but impure samples can appear yellowish. It dissolves freely in water to give mildly acidic solutions. It is a mild reducing agent.
Vitamin C is a water-soluble vitamin found in citrus and other fruits, berries and vegetables. It is also a generic prescription medication and in some countries is sold as a non-prescription dietary supplement. As a therapy, it is used to prevent and treat scurvy, a disease caused by vitamin C deficiency.
Linus Carl Pauling was an American chemist, biochemist, chemical engineer, peace activist, author, and educator. He published more than 1,200 papers and books, of which about 850 dealt with scientific topics. New Scientist called him one of the 20 greatest scientists of all time. For his scientific work, Pauling was awarded the Nobel Prize in Chemistry in 1954. For his peace activism, he was awarded the Nobel Peace Prize in 1962. He is one of five people to have won more than one Nobel Prize. Of these, he is the only person to have been awarded two unshared Nobel Prizes, and one of two people to be awarded Nobel Prizes in different fields, the other being Marie Curie.
Vitamin E is classified as an essential nutrient for humans that is found naturally in some types of food and is also widely available as a nutritional supplement. It exists as a group of eight molecular-structure related compounds that include four tocopherols and four tocotrienols. Vitamin E functions as a fat-soluble antioxidant which may help protect cell membranes from reactive oxygen species. Various government organizations recommend that adults consume between 3 and 15 mg per day, whereas a worldwide review reported a median dietary intake of 6.2 mg per day. Foods rich in vitamin E include seeds, nuts, seed oils, peanut butter, and vitamin E-fortified foods. Symptomatic vitamin E deficiency is rare, is usually caused by an underlying problem with digesting dietary fat rather than from a diet low in vitamin E. Deficiency can cause neurological disorders.
Vitamin B6 is one of the B vitamins, and is an essential nutrient for humans. The term essential nutrient refers to a group of six chemically similar compounds, i.e., "vitamers", which can be interconverted in biological systems. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in more than 140 enzyme reactions in amino acid, glucose, and lipid metabolism.
Vitamin A is a fat-soluble vitamin that is an essential nutrient. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinyl esters, and several provitamin (precursor) carotenoids, most notably β-carotene (beta-carotene). Vitamin A has multiple functions: growth during embryo development, maintaining the immune system, and healthy vision. For aiding vision specifically, it combines with the protein opsin to form rhodopsin, the light-absorbing molecule necessary for both low-light and color vision.
Retinol, also called vitamin A1, is a fat-soluble vitamin in the vitamin A family that is found in food and used as a dietary supplement. Retinol or other forms of vitamin A are needed for vision, cellular development, maintenance of skin and mucous membranes, immune function and reproductive development. Dietary sources include fish, dairy products, and meat. As a supplement it is used to treat and prevent vitamin A deficiency, especially that which results in xerophthalmia. It is taken by mouth or by injection into a muscle. As an ingredient in skin-care products, it is used to reduce wrinkles and other effects of skin aging.
Folate, also known as vitamin B9 and folacin, is one of the B vitamins. Manufactured folic acid, which is converted into folate by the body, is used as a dietary supplement and in food fortification as it is more stable during processing and storage. Folate is required for the body to make DNA and RNA and metabolise amino acids necessary for cell division and maturation of blood cells. As the human body cannot make folate, it is required in the diet, making it an essential nutrient. It occurs naturally in many foods. The recommended adult daily intake of folate in the U.S. is 400 micrograms from foods or dietary supplements.
A nutrient is a substance used by an organism to survive, grow and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi and protists. Nutrients can be incorporated into cells for metabolic purposes or excreted by cells to create non-cellular structures such as hair, scales, feathers, or exoskeletons. Some nutrients can be metabolically converted into smaller molecules in the process of releasing energy such as for carbohydrates, lipids, proteins and fermentation products leading to end-products of water and carbon dioxide. All organisms require water. Essential nutrients for animals are the energy sources, some of the amino acids that are combined to create proteins, a subset of fatty acids, vitamins and certain minerals. Plants require more diverse minerals absorbed through roots, plus carbon dioxide and oxygen absorbed through leaves. Fungi live on dead or living organic matter and meet nutrient needs from their host.
A dietary supplement is a manufactured product intended to supplement a person's diet by taking a pill, capsule, tablet, powder, or liquid. A supplement can provide nutrients either extracted from food sources, or that are synthetic. The classes of nutrient compounds in supplements include vitamins, minerals, fiber, fatty acids, and amino acids. Dietary supplements can also contain substances that have not been confirmed as being essential to life, and so are not nutrients per se, but are marketed as having a beneficial biological effect, such as plant pigments or polyphenols. Animals can also be a source of supplement ingredients, such as collagen from chickens or fish for example. These are also sold individually and in combination, and may be combined with nutrient ingredients. The European Commission has also established harmonized rules to help insure that food supplements are safe and appropriately labeled.
Orthomolecular medicine is a form of alternative medicine that claims to maintain human health through nutritional supplementation. It is rejected by evidence-based medicine. The concept builds on the idea of an optimal nutritional environment in the body and suggests that diseases reflect deficiencies in this environment. Treatment for disease, according to this view, involves attempts to correct "imbalances or deficiencies based on individual biochemistry" by use of substances such as vitamins, minerals, amino acids, trace elements and fatty acids. The notions behind orthomolecular medicine are not supported by sound medical evidence, and the therapy is not effective for chronic disease prevention; even the validity of calling the orthomolecular approach a form of medicine has been questioned since the 1970s.
Phytochemicals are chemical compounds produced by plants, generally to help them resist fungi, bacteria and plant virus infections, and also consumption by insects and other animals. The name comes from Greek φυτόν (phyton) 'plant'. Some phytochemicals have been used as poisons and others as traditional medicine.
β-Carotene (beta-carotene) is an organic, strongly colored red-orange pigment abundant in fungi, plants, and fruits. It is a member of the carotenes, which are terpenoids (isoprenoids), synthesized biochemically from eight isoprene units and thus having 40 carbons.
A multivitamin is a preparation intended to serve as a dietary supplement with vitamins, dietary minerals, and other nutritional elements. Such preparations are available in the form of tablets, capsules, pastilles, powders, liquids, or injectable formulations. Other than injectable formulations, which are only available and administered under medical supervision, multivitamins are recognized by the Codex Alimentarius Commission as a category of food.
In organic chemistry, nitrosamines are organic compounds with the chemical structure R2N−N=O, where R is usually an alkyl group. They feature a nitroso group bonded to a deprotonated amine. Most nitrosamines are carcinogenic in nonhuman animals. A 2006 systematic review supports a "positive association between nitrite and nitrosamine intake and gastric cancer, between meat and processed meat intake and gastric cancer and oesophageal cancer, and between preserved fish, vegetable and smoked food intake and gastric cancer, but is not conclusive".
Dehydroascorbic acid (DHA) is an oxidized form of ascorbic acid. It is actively imported into the endoplasmic reticulum of cells via glucose transporters. It is trapped therein by reduction back to ascorbic acid by glutathione and other thiols. The (free) chemical radical semidehydroascorbic acid (SDA) also belongs to the group of oxidized ascorbic acids.
Lutein is a xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants, and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll, an excited form of chlorophyll which is overproduced at very high light levels during photosynthesis. See xanthophyll cycle for this topic.
Megavitamin therapy is the use of large doses of vitamins, often many times greater than the recommended dietary allowance (RDA) in the attempt to prevent or treat diseases. Megavitamin therapy is typically used in alternative medicine by practitioners who call their approach orthomolecular medicine. Vitamins are useful in preventing and treating illnesses specifically associated with dietary vitamin shortfalls, but the conclusions of medical research are that the broad claims of disease treatment by advocates of megavitamin therapy are unsubstantiated by the available evidence. It is generally accepted that doses of any vitamin greatly in excess of nutritional requirements will result either in toxicity or in the excess simply being metabolised; thus evidence in favour of vitamin supplementation supports only doses in the normal range. Critics have described some aspects of orthomolecular medicine as food faddism or even quackery. Research on nutrient supplementation in general suggests that some nutritional supplements might be beneficial, and that others might be harmful; several specific nutritional therapies are associated with an increased likelihood of the condition they are meant to prevent.
Vitamin C and the Common Cold is a popular book by Linus Pauling, first published in 1970, on vitamin C, its interactions with common cold and the role of vitamin C megadosage in human health. The book promoted the idea that taking large amounts of vitamin C could reduce the duration and severity of the common cold. A Nobel Prize-winning chemist and activist, Pauling promoted a view of vitamin C that is strongly at odds with most of the scientific community, which found little evidence for the alleged health benefits of greatly increased vitamin C intake. The book went through multiple editions, and a revised version that discussed the flu and other diseases, retitled Vitamin C, the Common Cold & the Flu, came out in 1976.
Intravenous Ascorbic Acid or PAA, pharmacologic ascorbic acid, is a process that delivers soluble ascorbic acid directly into the bloodstream. It is not approved for use to treat any medical condition.
{{cite web}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)