Exercise-induced bronchoconstriction

Last updated
Exercise-induced Bronchoconstriction
Other namesEIA
Specialty Pulmonology   OOjs UI icon edit-ltr-progressive.svg
Symptoms Shortness of breath on vigorous exercise
Usual onsetRapid, on exercise
DurationFor the duration of activity and some time afterwards
CausesModerate to high intensity exercise

Exercise-induced bronchoconstriction (EIB) occurs when the airways narrow as a result of exercise. This condition has been referred to as exercise-induced asthma (EIA); however, this term is no longer preferred. [1] While exercise does not cause asthma, it is frequently an asthma trigger. [1]

Contents

It might be expected that people with EIB would present with shortness of breath, and/or an elevated respiratory rate and wheezing, consistent with an asthma attack. However, many will present with decreased stamina, or difficulty in recovering from exertion compared to team members, or paroxysmal coughing from an irritable airway. [2] Similarly, examination may reveal wheezing and prolonged expiratory phase, or may be quite normal. Consequently, a potential for under-diagnosis exists. Measurement of airflow, such as peak expiratory flow rates, which can be done inexpensively on the track or sideline, may prove helpful. In athletes, symptoms of bronchospasm such as chest discomfort, breathlessness, and fatigue are often falsely attributed to the individual being out of shape, having asthma, or possessing a hyperreactive airway rather than EIB. [3]

Cause

While the potential triggering events for EIB are well recognized, the underlying pathogenesis is poorly understood. [4] It usually occurs after at least several minutes of vigorous, aerobic activity, which increases oxygen demand to the point where breathing through the nose (nasal breathing) must be supplemented by mouth breathing. The resultant inhalation of air that has not been warmed and humidified by the nasal passages seems to generate increased blood flow to the linings of the bronchial tree, resulting in edema. Constriction of these small airways then follows, worsening the degree of obstruction to airflow. There is increasing evidence that the smooth muscle that lines the airways becomes progressively more sensitive to changes that occur as a result of injury to the airways from dehydration. The chemical mediators that provoke the muscle spasm appear to arise from mast cells. [4] Mouth breathing as a result of decreased nasal breathing also increases lung surface exposure to irritants, pollutants, and allergens, causing neutrophilic inflammation in response to reactive oxygen species formation; research has found that individuals with genetically hindered glutathione counteraction of this oxidative stress are likely at a higher risk of developing EIB. [5]

Diagnosis

Exercise-induced bronchoconstriction can be difficult to diagnose clinically given the lack of specific symptoms [2] and frequent misinterpretation as manifestations of vigorous exercise. There are many mimics that present with similar symptoms, such as vocal cord dysfunction, cardiac arrhythmias, cardiomyopathies, and gastroesophageal reflux disease. It is also important to distinguish those who have asthma with exercise worsening, and who consequently will have abnormal testing at rest, from true exercise-induced bronchoconstriction, where there will be normal baseline results. Because of the wide differential diagnosis of exertional respiratory complaints, the diagnosis of exercise-induced bronchoconstriction based on history and self-reported symptoms alone has been shown to be inaccurate [6] [7] and to result in an incorrect diagnosis more than 50% of the time. [8] An important and often overlooked differential diagnosis is exercise-induced laryngeal obstruction (EILO). The latter can co-exist with EIB and is best differentiated using objective testing and continuous laryngoscopy during exercise (CLE) testing.

Spirometry

Objective testing should begin with spirometry at rest. In true exercise-induced bronchoconstriction, the results should be within normal limits. Should resting values be abnormal, then asthma, or some other chronic lung condition, is present. There is, of course, no reason why asthma and exercise-induced bronchoconstriction should not co-exist but the distinction is important because without successful treatment of underlying asthma, treatment of an exercise component will likely be unsuccessful. If baseline testing is normal, some form of exercise or pharmacologic stress will be required, either on the sideline or practice venue, or in the laboratory. [9]

Exercise testing

Treadmill or ergometer-based testing in lung function laboratories are effective methods for diagnosing exercise-induced bronchoconstriction, but may result in false negatives if the exercise stimulus is not intense enough.

Field-exercise challenge

Field-exercise challenge tests that involve the athlete performing the sport in which they are normally involved and assessing FEV1 after exercise are helpful if abnormal but have been shown to be less sensitive than eucapnic voluntary hyperventilation. [10]

Eucapnic voluntary hyperventilation challenge

The International Olympic Committee recommends the eucapnic voluntary hyperventilation (EVH) challenge as the test to document exercise-induced asthma in Olympic athletes. [11] In the EVH challenge, the patient voluntarily, without exercising, rapidly breathes dry air enriched with 5% CO2 for six minutes. The presence of the enriched CO2 compensates for the CO2 losses in the expired air, not matched by metabolic production, that occurs during hyperventilation, and so maintains CO2 levels at normal. [12]

Medication challenge

Medication challenge tests, such as the methacholine challenge test, have a lower sensitivity for detection of exercise-induced bronchoconstriction in athletes and are also not a recommended first-line approach in the evaluation of exercise-induced asthma. [13]

Mannitol inhalation [14] [15] has been recently approved for use in the United States.

A relatively recent review of the literature has concluded that there is currently insufficient available evidence to conclude that either mannitol inhalation or eucapnic voluntary hyperventilation are suitable alternatives to exercise challenge testing to detect exercise-induced bronchoconstriction and that additional research is required. [16]

Treatment

Lifestyle

The best treatment is avoidance of conditions predisposing to attacks, when possible. In athletes who wish to continue their sport or do so in adverse conditions, preventive measures include altered training techniques and medications.

Some take advantage of the refractory period by precipitating an attack by "warming up," and then timing competition such that it occurs during the refractory period. Step-wise training works in a similar fashion. Warm up occurs in stages of increasing intensity, using the refractory period generated by each stage to reach a full workload. [17]

Medication

There is no evidence supporting different treatment for EIB in asthmatic athletes and nonathletes. [18] The most common medication used is a beta agonist taken about 20 minutes before exercise. [18] Some physicians prescribe inhaled anti-inflammatory mists such as corticosteroids or leukotriene antagonists, and mast cell stabilizers have also proven effective. [18]

In May 2013, the American Thoracic Society issued the first treatment guidelines for EIB, recommending use of "a short-acting β2-agonist before exercise in all patients with EIB. For patients who continue to have symptoms of EIB despite the administration of a short-acting β2-agonist before exercise, strong recommendations were made for a daily inhaled corticosteroid, a daily leukotriene receptor antagonist, or a mast cell stabilizing agent before exercise." [19]

There is conflicting information about the value of theophylline and other methylxanthines as prophylaxis against exercise-induced bronchoconstriction. [20]

Research

A crossover study compared oral montelukast with inhaled salmeterol, both given two hours before exercise, showing that the drugs had similar benefit. [21]

A meta-analysis of preliminary research indicated that vitamin C may be useful to relieve respiratory symptoms such as cough during exercise. [22]

Prevalence in athletes

Olympic swimmers Tom Dolan, Amy Van Dyken, and Nancy Hogshead, Olympic track star Jackie Joyner-Kersee, baseball Hall of Famer Catfish Hunter, and American football player Jerome Bettis are among the many who have the condition. Tour de France winner Chris Froome reported that he suffers from the condition, after being spotted using a nasal inhaler during race. [23] Other athletes with EIB include racing cyclist Simon Yates, distance runner Paula Radcliffe [24] and cross-country skier Marit Bjørgen. [25] Research by sports scientist John Dickinson found that 70 percent of UK-based members of the British swimming team had some form of asthma, as did a third of Team Sky cyclists, compared to a national asthma rate of eight to ten percent, [24] whilst a study by the United States Olympic Committee in 2000 found that half of cross-country skiers had EIB. [25]

Related Research Articles

<span class="mw-page-title-main">Asthma</span> Long-term inflammatory disease of the airways of the lungs

Asthma is a common long-term inflammatory disease of the airways of the lungs. Asthma occurs when allergens, pollen, dust, or other particles, are inhaled into the lungs, causing the bronchioles to constrict and produce mucus, which then restricts oxygen flow to the alveoli. It is characterized by variable and recurring symptoms, reversible airflow obstruction, and easily triggered bronchospasms. Symptoms include episodes of wheezing, coughing, chest tightness, and shortness of breath. These may occur a few times a day or a few times per week. Depending on the person, asthma symptoms may become worse at night or with exercise.

A bronchodilator or broncholytic is a substance that dilates the bronchi and bronchioles, decreasing resistance in the respiratory airway and increasing airflow to the lungs. Bronchodilators may be originating naturally within the body, or they may be medications administered for the treatment of breathing difficulties, usually in the form of inhalers. They are most useful in obstructive lung diseases, of which asthma and chronic obstructive pulmonary disease are the most common conditions. They may be useful in bronchiolitis and bronchiectasis, although this remains somewhat controversial. They are often prescribed but of unproven significance in restrictive lung diseases.

<span class="mw-page-title-main">Cough</span> Sudden expulsion of air from the lungs as a reflex to clear irritants

A cough is a sudden expulsion of air through the large breathing passages which can help clear them of fluids, irritants, foreign particles and microbes. As a protective reflex, coughing can be repetitive with the cough reflex following three phases: an inhalation, a forced exhalation against a closed glottis, and a violent release of air from the lungs following opening of the glottis, usually accompanied by a distinctive sound.

The Buteyko method or Buteyko breathing technique is a form of complementary or alternative physical therapy that proposes the use of breathing exercises primarily as a treatment for asthma and other respiratory conditions.

<span class="mw-page-title-main">Salbutamol</span> Short-acting bronchodilator used for acute asthma

Salbutamol, also known as albuterol and sold under the brand name Ventolin among others, is a medication that opens up the medium and large airways in the lungs. It is a short-acting β2 adrenergic receptor agonist that causes relaxation of airway smooth muscle. It is used to treat asthma, including asthma attacks and exercise-induced bronchoconstriction, as well as chronic obstructive pulmonary disease (COPD). It may also be used to treat high blood potassium levels. Salbutamol is usually used with an inhaler or nebulizer, but it is also available in a pill, liquid, and intravenous solution. Onset of action of the inhaled version is typically within 15 minutes and lasts for two to six hours.

<span class="mw-page-title-main">Rhinitis</span> Irritation and inflammation of the mucous membrane inside the nose

Rhinitis, also known as coryza, is irritation and inflammation of the mucous membrane inside the nose. Common symptoms are a stuffy nose, runny nose, sneezing, and post-nasal drip.

<span class="mw-page-title-main">Bronchospasm</span> Lower respiratory tract disease that affects the airways leading into the lungs

Bronchospasm or a bronchial spasm is a sudden constriction of the muscles in the walls of the bronchioles. It is caused by the release (degranulation) of substances from mast cells or basophils under the influence of anaphylatoxins. It causes difficulty in breathing which ranges from mild to severe.

<span class="mw-page-title-main">Bronchoconstriction</span> Constriction of the terminal airways in the lungs

Bronchoconstriction is the constriction of the airways in the lungs due to the tightening of surrounding smooth muscle, with consequent coughing, wheezing, and shortness of breath.

A wheeze is a clinical symptom of a continuous, coarse, whistling sound produced in the respiratory airways during breathing. For wheezes to occur, part of the respiratory tree must be narrowed or obstructed, or airflow velocity within the respiratory tree must be heightened. Wheezing is commonly experienced by persons with a lung disease; the most common cause of recurrent wheezing is asthma, though it can also be a symptom of lung cancer, congestive heart failure, and certain types of heart diseases.

Reactive airway disease (RAD) is an informal label that physicians apply to patients with symptoms similar to those of asthma. An exact definition of the condition does not exist. Individuals who are typically labeled as having RAD generally have a history of wheezing, coughing, dyspnea, and production of sputum that may or may not be caused by asthma. Symptoms may also include, but are not limited to, coughing, shortness of breath, excess mucus in the bronchial tube, swollen mucous membrane in the bronchial tube, and/or hypersensitive bronchial tubes. Physicians most commonly label patients with RAD when they are hesitant about formally diagnosing a patient with asthma, which is most prevalent in the pediatric setting. While some physicians may use RAD and asthma synonymously, there is controversy over this usage.

Occupational asthma is new onset asthma or the recurrence of previously quiescent asthma directly caused by exposure to an agent at workplace. It is an occupational lung disease and a type of work-related asthma. Agents that can induce occupational asthma can be grouped into sensitizers and irritants.

<span class="mw-page-title-main">Obstructive lung disease</span> Category of respiratory disease characterized by airway obstruction

Obstructive lung disease is a category of respiratory disease characterized by airway obstruction. Many obstructive diseases of the lung result from narrowing (obstruction) of the smaller bronchi and larger bronchioles, often because of excessive contraction of the smooth muscle itself. It is generally characterized by inflamed and easily collapsible airways, obstruction to airflow, problems exhaling, and frequent medical clinic visits and hospitalizations. Types of obstructive lung disease include asthma, bronchiectasis, bronchitis and chronic obstructive pulmonary disease (COPD). Although COPD shares similar characteristics with all other obstructive lung diseases, such as the signs of coughing and wheezing, they are distinct conditions in terms of disease onset, frequency of symptoms, and reversibility of airway obstruction. Cystic fibrosis is also sometimes included in obstructive pulmonary disease.

Vocal cord dysfunction (VCD) is a condition affecting the vocal cords. It is characterized by abnormal closure of the vocal folds, which can result in significant difficulties and distress during breathing, particularly during inhalation.

<span class="mw-page-title-main">Exhaled nitric oxide</span> Breath test for respiratory inflammation

In medicine, exhaled nitric oxide can be measured in a breath test for asthma and other respiratory conditions characterized by airway inflammation. Nitric oxide (NO) is a gaseous molecule produced by certain cell types in an inflammatory response. The fraction of exhaled NO (FENO) is a promising biomarker for the diagnosis, follow-up and as a guide to therapy in adults and children with asthma. The breath test has recently become available in many well-equipped hospitals in developed countries, although its exact role remains unclear.

<span class="mw-page-title-main">Pathophysiology of asthma</span> Medical condition

Asthma is a common pulmonary condition defined by chronic inflammation of respiratory tubes, tightening of respiratory smooth muscle, and episodes of bronchoconstriction. The Centers for Disease Control and Prevention estimate that 1 in 11 children and 1 in 12 adults have asthma in the United States of America. According to the World Health Organization, asthma affects 235 million people worldwide. There are two major categories of asthma: allergic and non-allergic. The focus of this article will be allergic asthma. In both cases, bronchoconstriction is prominent.

Alcohol-induced respiratory reactions, also termed alcohol-induced asthma and alcohol-induced respiratory symptoms, are increasingly recognized as a pathological bronchoconstriction response to the consumption of alcohol that afflicts many people with a "classical" form of asthma, the airway constriction disease evoked by the inhalation of allergens. Alcohol-induced respiratory reactions reflect the operation of different and often racially related mechanisms that differ from those of classical, allergen-induced asthma.

Exercise-induced laryngeal obstruction (EILO) is a transient, reversible narrowing of the larynx that occurs during high intensity exercise. This acts to impair airflow and cause shortness of breath, stridor and often discomfort in the throat and upper chest. EILO is a very common cause of breathing difficulties in young athletic individuals but is often misdiagnosed as asthma or exercise-induced bronchoconstriction.

<span class="mw-page-title-main">Asthma trigger</span> Factor that provokes symptoms of asthma

Asthma triggers are factors or stimuli that provoke the exacerbation of asthma symptoms or increase the degree of airflow disruption, which can lead to an asthma attack. An asthma attack is characterized by an obstruction of the airway, hypersecretion of mucus and bronchoconstriction due to the contraction of smooth muscles around the respiratory tract. Its symptoms include a wide range of manifestations such as breathlessness, coughing, a tight chest and wheezing.

Asthma phenotyping and endotyping is a novel approach to asthma classification inspired by precision medicine. It seeks to separate the clinical presentations or clusters of signs and symptoms of asthma, known as asthma phenotypes, from their underlying etiologies or causes, known as asthma endotypes.

An anti-asthmatic agent, also known as an anti-asthma drug, refers to a drug that can aid in airway smooth muscle dilation to allow normal breathing during an asthma attack or reduce inflammation on the airway to decrease airway resistance for asthmatic patients, or both. The goal of asthmatic agents is to reduce asthma exacerbation frequencies and related hospital visits.

References

  1. 1 2 Khan, DA (Jan–Feb 2012). "Exercise-induced bronchoconstriction: burden and prevalence". Allergy and Asthma Proceedings. 33 (1): 1–6. doi:10.2500/aap.2012.33.3507. PMID   22370526.
  2. 1 2 Parsons JP, Cosmar D, Phillips G, Kaeding C, Best TM, Mastronarde JG (March 2012). "Screening for exercise-induced bronchoconstriction in college athletes". J Asthma. 49 (2): 153–7. doi:10.3109/02770903.2011.652329. PMC   3832203 . PMID   22276571.
  3. Parsons JP, Mastronarde JG (24 December 2015). "Exercise-Induced Bronchoconstriction in Athletes". Chest. 128 (6): 3966–3974. doi:10.1016/S0012-3692(15)49641-2. PMID   16354868. S2CID   38398971 . Retrieved 28 November 2020.
  4. 1 2 Anderson SD, Kippelen P (March 2005). "Exercise-induced bronchoconstriction: Pathogenesis". Current Allergy and Asthma Reports. 5 (2): 116–22. doi:10.1007/s11882-005-0084-y. PMID   15683611. S2CID   11816261.
  5. Gerow, M; Bruner, PJ (January 2023). "Exercise-Induced Bronchoconstriction". Exercise-Induced Asthma. Treasure Island (FL): StatPearls Publishing LLC. PMID   32491486.
  6. Hallstrand TS, Curtis JR, Koepsell TD, et al. (September 2002). "Effectiveness of screening examinations to detect unrecognized exercise-induced bronchoconstriction". J. Pediatr. 141 (3): 343–8. doi: 10.1067/mpd.2002.125729 . PMID   12219053.
  7. Rundell KW, Im J, Mayers LB, Wilber RL, Szmedra L, Schmitz HR (February 2001). "Self-reported symptoms and exercise-induced asthma in the elite athlete". Med Sci Sports Exerc. 33 (2): 208–13. doi:10.1097/00005768-200102000-00006. PMID   11224807.
  8. Parsons JP, Kaeding C, Phillips G, Jarjoura D, Wadley G, Mastronarde JG (September 2007). "Prevalence of exercise-induced bronchospasm in a cohort of varsity college athletes". Med Sci Sports Exerc. 39 (9): 1487–92. doi: 10.1249/mss.0b013e3180986e45 . PMID   17805078.
  9. Carlsen KH, Anderson SD, Bjermer L, et al. (April 2008). "Exercise-induced asthma, respiratory and allergic disorders in elite athletes: epidemiology, mechanisms and diagnosis: Part I of the report from the Joint Task Force of the European Respiratory Society (ERS) and the European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA2LEN". Allergy. 63 (4): 387–403. doi: 10.1111/j.1398-9995.2008.01662.x . PMID   18315727.
  10. Mannix ET, Manfredi F, Farber MO (1999). "A comparison of two challenge tests for identifying exercise-induced bronchospasm in figure skaters". Chest. 115 (3): 649–53. doi:10.1378/chest.115.3.649. PMID   10084470. S2CID   2599863.
  11. Douglas B. McKeag; James L. Moeller; American College of Sports Medicine (3 July 2007). ACSM's Primary Care Sports Medicine. Lippincott Williams & Wilkins. p. 167. ISBN   978-0-7817-7028-6 . Retrieved 21 April 2012.
  12. Rosenthal, Richard. "Eucapnic Voluntary Hyperventilation (EVH) A Test for the Presence of Asthma". Archived from the original on 2014-05-31. Retrieved 2014-05-30.
  13. Weiler JM, Bonini S, Coifman R, Craig T, Delgado L, Capão-Filipe M, et al. (2007). "American Academy of Allergy, Asthma & Immunology Work Group report: exercise-induced asthma". J Allergy Clin Immunol. 119 (6): 1349–58. doi: 10.1016/j.jaci.2007.02.041 . PMID   17433829.
  14. Brannan JD, Koskela H, Anderson SD, Chew N (1998). "Responsiveness to mannitol in asthmatic subjects with exercise- and hyperventilation-induced asthma". Am J Respir Crit Care Med. 158 (4): 1120–6. doi:10.1164/ajrccm.158.4.9802087. PMID   9769270.
  15. Muñoz PA, Gómez FP, Manrique HA, Roca J, Barberà JA, Young IH, et al. (2008). "Pulmonary gas exchange response to exercise- and mannitol-induced bronchoconstriction in mild asthma". J Appl Physiol. 105 (5): 1477–85. doi:10.1152/japplphysiol.00108.2008. PMID   18756011. S2CID   17712937.
  16. Stickland MK, Rowe BH, Spooner CH, Vandermeer B, Dryden DM (September 2011). "Accuracy of eucapnic hyperpnea or mannitol to diagnose exercise-induced bronchoconstriction: a systematic review". Ann Allergy Asthma Immunol. 107 (3): 229–34. doi:10.1016/j.anai.2011.06.013. PMID   21875541.
  17. Stickland MK, Rowe BH, Spooner CH, Vandermeer B, Dryden DM (March 2012). "Effect of warm-up exercise on exercise-induced bronchoconstriction". Med Sci Sports Exerc. 44 (3): 383–91. doi: 10.1249/MSS.0b013e31822fb73a . PMID   21811185. S2CID   343413.
  18. 1 2 3 Carlsen KH, Anderson SD, Bjermer L, et al. (April 2008). "Treatment of exercise-induced asthma, respiratory and allergic disorders in sports and the relationship to doping: Part II of the report from the Joint Task Force of European Respiratory Society (ERS) and European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA2LEN". Allergy. 63 (4): 492–505. doi: 10.1111/j.1398-9995.2008.01663.x . PMID   18394123.
  19. Parsons JP, Hallstrand TS, Mastronarde JG, et al. (May 2013). "An Official American Thoracic Society Clinical Practice Guideline: Exercise-induced Bronchoconstriction". American Journal of Respiratory and Critical Care Medicine. 187 (9): 1016–27. doi:10.1164/rccm.201303-0437ST. PMID   23634861. S2CID   32941118.
  20. Pigakis, Konstantinos M; Stavrou, Vasileios T; Pantazopoulos, Ioannis; Daniil, Zoe; Kontopodi, Aggeliki K; Gourgoulianis, Konstantinos (3 January 2022). "Exercise-Induced Bronchospasm in Elite Athletes". Cureus. 14 (1): e20898. doi: 10.7759/cureus.20898 . PMC   8807463 . PMID   35145802.
  21. Philip G, Pearlman DS, Villarán C, et al. (2007). "Single-dose montelukast or salmeterol as protection against exercise-induced bronchoconstriction". Chest. 132 (3): 875–83. doi:10.1378/chest.07-0550. PMID   17573489.
  22. Hemilä, H (7 June 2013). "Vitamin C may alleviate exercise-induced bronchoconstriction: a meta-analysis". BMJ Open . 3 (6): e002416. doi:10.1136/bmjopen-2012-002416. PMC   3686214 . PMID   23794586. Open Access logo PLoS transparent.svg
  23. "Froome surprised at controversy over in-race inhaler use". 10 June 2014.
  24. 1 2 Walker, Peter (29 April 2016). "Why do so many elite athletes have asthma?". theguardian.com . Retrieved 29 April 2016.
  25. 1 2 Gardner, Amanda (17 February 2010). "For Olympians and weekend warriors, winter sports can trigger asthma". cnn.com . Retrieved 29 April 2016.