Penicillium purpurogenum

Last updated

Penicillium purpurogenum
Ppurpurogenum.jpg
Penicillium purpurogenum on potato dextrose agar
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Penicillium
Species:
P. purpurogenum
Binomial name
Penicillium purpurogenum
Stoll, (1923)

Penicillium purpurogenum is a plant pathogen infecting strawberries. It produces rubratoxin B, a mycotoxin with anticarcinogenic properties, as well as monascus pigments. [1] [2]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Cytochrome</span> Redox-active proteins containing a heme with a Fe atom as a cofactor

Cytochromes are redox-active proteins containing a heme, with a central iron (Fe) atom at its core, as a cofactor. They are involved in the electron transport chain and redox catalysis. They are classified according to the type of heme and its mode of binding. Four varieties are recognized by the International Union of Biochemistry and Molecular Biology (IUBMB), cytochromes a, cytochromes b, cytochromes c and cytochrome d.

<i>Penicillium</i> Genus of fungi

Penicillium is a genus of ascomycetous fungi that is part of the mycobiome of many species and is of major importance in the natural environment, in food spoilage, and in food and drug production.

<i>Talaromyces marneffei</i> Species of fungus

Talaromyces marneffei, formerly called Penicillium marneffei, was identified in 1956. The organism is endemic to southeast Asia where it is an important cause of opportunistic infections in those with HIV/AIDS-related immunodeficiency. Incidence of T. marneffei infections has increased due to a rise in HIV infection rates in the region.

<span class="mw-page-title-main">Strawberry</span> Edible fruit

The garden strawberry is a widely grown hybrid species of the genus Fragaria, collectively known as the strawberries, which are cultivated worldwide for their fruit. The fruit is widely appreciated for its characteristic aroma, bright red color, juicy texture, and sweetness. It is consumed in large quantities, either fresh or in such prepared foods as jam, juice, pies, ice cream, milkshakes, and chocolates. Artificial strawberry flavorings and aromas are also widely used in products such as candy, soap, lip gloss, perfume, and many others.

Penicillium aurantiogriseum is a plant pathogen infecting asparagus and strawberry. Chemical compounds isolated from Penicillium aurantiogriseum include anicequol and auranthine.

<span class="mw-page-title-main">OPN1MW</span> Protein-coding gene in the species Homo sapiens

Green-sensitive opsin is a protein that in humans is encoded by the OPN1MW gene. OPN1MW2 is a similar opsin.

<i>Penicillium chrysogenum</i> Species of fungus

Penicillium chrysogenum is a species of fungus in the genus Penicillium. It is common in temperate and subtropical regions and can be found on salted food products, but it is mostly found in indoor environments, especially in damp or water-damaged buildings. It has been recognised as a species complex that includes P. notatum, P. meleagrinum, and P. cyaneofulvum. Molecular phylogeny has established that Alexander Fleming's first discovered penicillin producing strain is of a distinct species, P. rubens, and not of P. notatum. It has rarely been reported as a cause of human disease. It is the source of several β-lactam antibiotics, most significantly penicillin. Other secondary metabolites of P. chrysogenum include roquefortine C, meleagrin, chrysogine, 6-MSA YWA1/melanin, andrastatin A, fungisporin, secalonic acids, sorbicillin, and PR-toxin.

<i>Penicillium rubens</i> Species of fungus

Penicillium rubens is a species of fungus in the genus Penicillium and was the first species known to produce the antibiotic penicillin. It was first described by Philibert Melchior Joseph Ehi Biourge in 1923. For the discovery of penicillin from this species Alexander Fleming shared the Nobel Prize in Physiology or Medicine in 1945. The original penicillin-producing type has been variously identified as Penicillium rubrum, P. notatum, and P. chrysogenum among others, but genomic comparison and phylogenetic analysis in 2011 resolved that it is P. rubens. It is the best source of penicillins and produces benzylpenicillin (G), phenoxymethylpenicillin (V) and octanoylpenicillin (K). It also produces other important bioactive compounds such as andrastin, chrysogine, fungisporin, roquefortine, and sorbicillins.

<span class="mw-page-title-main">Rubratoxin</span>

Rubratoxins are hepatotoxic mycotoxin produced by Penicillium rubrum and Penicillium purpurogenum. Rubratoxin A and rubratoxin B have been known since 1950s. Rubratoxins are also known as protein phosphatase 2A (PP2A) specific inhibitor. The PP2A inhibitory activity of rubratoxin A is about 100-fold higher than rubratoxin B and rubratoxin A is now used as a chemical probe for PP2A research.

Medicinal fungi are fungi that contain metabolites or can be induced to produce metabolites through biotechnology to develop prescription drugs. Compounds successfully developed into drugs or under research include antibiotics, anti-cancer drugs, cholesterol and ergosterol synthesis inhibitors, psychotropic drugs, immunosuppressants and fungicides.

Penicillium herquei is an anamorph, filamentous species of the genus of Penicillium which produces citreorosein, emodin, hualyzin, herquline B, janthinone, citrinin and duclauxin,.

Penicillium islandicum is an anamorph species of the genus of Penicillium which produces luteoskyrin, simatoxin, cyclochlorotine, rugulosin, islanditoxin and chitosanase.

Penicillium rubrum is a species of fungus in the genus Penicillium which produces kojic acid, mitorubrin, mitorubrinol, rubratoxin A, rubratoxin B rubralactone, rubramin and occurs in grain corn and soybeans. Penicillium rubrum is similar to the species Penicillium chrysogenum.

Penicillium simplicissimum is an anamorph species of fungus in the genus Penicillium which can promote plant growth. This species occurs on food and its primary habitat is in decaying vegetations Penicillium simplicissimum produces verruculogene, fumitremorgene B, penicillic acid, viridicatumtoxin, decarestrictine G, decarestrictine L, decarestrictine H, decarestrictine I, decarestrictine K decarestrictine M, dihydrovermistatin, vermistatin and penisimplicissin

Penicillium thiersii is a species of fungus in the genus Penicillium which was isolated from a wood decay fungi (Hypoxylon) in Wisconsin in North America. Penicillium thiersii produces thiersindole A, thiersindole B, thiersindole C, oxalicine A and oxalicine B

<i>Cladosporium cladosporioides</i> Species of fungus

Cladosporium cladosporioides is a darkly pigmented mold that occurs world-wide on a wide range of materials both outdoors and indoors. It is one of the most common fungi in outdoor air where its spores are important in seasonal allergic disease. While this species rarely causes invasive disease in animals, it is an important agent of plant disease, attacking both the leaves and fruits of many plants. This species produces asexual spores in delicate, branched chains that break apart readily and drift in the air. It is able to grow under low water conditions and at very low temperatures.

Streptomyces vietnamensis is a bacterium species from the genus of Streptomyces which has been isolated from forest soil in Vietnam.

<span class="mw-page-title-main">Luteoskyrin</span> Chemical compound

Luteoskyrin is a carcinogenic mycotoxin with the molecular formula C30H22O12 which is produced by the mold Penicillium islandicum. Luteoskyrin has strong cytotoxic effects. Luteoskyrin can cause the yellow rice disease.

<span class="mw-page-title-main">Griseoxanthone C</span> Chemical compound found in some lichens

Griseoxanthone C is an organic compound in the structural class of chemicals known as xanthones. Its chemical formula is 1,6-dihydroxy-3-methoxy-8-methylxanthen-9-one, and its molecular formula is C15H12O5. It is found in a plant and some fungi, including a lichen.

References

  1. Natori, Shinsaku; Sakaki, Setsuko; Kurata, Hiroshi; Udagawa, Shun-Ichi; Ichinoe, Masakatsu; Saito, Mamoru; Umeda, Makoto; Ohtsubo, Kohichiro (April 1970). "Production of Rubratoxin B by Penicillium purpurogenum Stoll". Applied Microbiology. 19 (4): 613–617. doi:10.1128/am.19.4.613-617.1970. ISSN   0003-6919. PMC   376749 . PMID   5418943.
  2. Jin, Hong-Jie; Zhang, Xin; Cao, Hong; Niu, Yu-Jing; Li, Chun; Liu, Hong (December 2018). "Chemical Composition, Security and Bioactivity of the Red Pigment from Penicillium purpurogenum Li-3". Chemistry & Biodiversity. 15 (12): e1800300. doi:10.1002/cbdv.201800300. PMID   30230698. S2CID   52294615.