Names | |
---|---|
IUPAC name 5-amino-5-oxo-2-[(1-oxo-2-phenylethyl)amino]pentanoic acid | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C13H16N2O4 | |
Molar mass | 264.281 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Phenylacetylglutamine is a product formed by the conjugation of phenylacetate and glutamine. It is a common metabolite that occurs naturally in human urine.
The highly-nitrogenous compound is most commonly encountered in human subjects with urea cycle disorders,. These conditions, such as uremia or hyperammonemia, tend to cause high levels of nitrogen in the form of ammonia in the blood. Uremic conditions are a result of defects in enzymes that convert ammonia to urea, the primary nitrogenous waste metabolite in the urea cycle. [1]
Phenylacetylglutamine is the primary metabolite of the degradation of phenylacetate when in the presence of glutamine in the liver. It is also produced in higher concentrations in the body through the metabolic degradation pathway of the pharmaceutical compounds sodium phenylbutyrate, glycerol phenylbutyrate, and sodium phenylacetate, considered more toxic, that are used as treatments for the physiological dysfunction in urea cycling. [2]
Phenylbutyrate is beta-oxidized into phenylacetate which is conjugated with glutamine in the liver and excreted by the kidney. Phenylacetylglutamine is the product of uremic conditions that require an alternative pathway to the urea cycle for nitrogen waste removal. This process produces comparable levels of phenylacetylglutamine in urine in relation to urea levels in a properly functioning urea cycle. In 24 hours 80-100% of a dose of phenylbutyrate is excreted in the urine as phenylacetylglutamine. [3]
The metabolism and conjugation of phenylacetate with glutamine in the liver involves amino acid acetylation carried out by the enzyme phenylacetyltranferase or glutamine N-acetyl transferase. The enzyme catalyzes the reaction of the substrates phenylacetyl-CoA and L-glutamine to produce CoA and alpha-N-phenylacetyl-L-glutamine and phenylacetic acid. [4] [5] The catalytic enzyme has been isolated in the human liver mitochondria. Furthermore, phenylacetylglutamine has been found in human urine, but not in the excretory material of rats, dogs, cats, monkeys, sheep, or horses. Throughout the metabolic process, phenylacetylglutamine is bound and conjugated by free-plasma in the kidney to remove excess nitrogen through its excretion in the urine.
Elevated levels of nitrogen in the blood increase the amount of glutamine, the primary, non-toxic carrier of ammonia in the blood, within patients with hyperammonemia and inborn errors in urea synthesis. [6] Phenylacetylglutamine levels in the urine serves as a more effective biomarker for the excretion of nitrogenous waste than measures of blood plasma, which fluctuate and are a less effective therapeutic monitor of waste nitrogen levels. A 24-hour metabolic urine test of phenylacetylglutamine provides a non-invasive biomarker of waste nitrogen that most consistently reflects the dose of phenylbutyric acid or glycerol phenylbutyrate used to treat patients with urea-cycle disorders. [7] [8] Phenylacetylglutamine isotopically labeled with 14C also serves more broadly to characterize relative rates of cellular reactions and functions as a general, non-invasive biomarker for gluconeogenesis and citric acid cycle intermediates in the liver. [4]
High levels of phenylacetylglutamine in the urine following metabolism by the gut microbiota may also indicate early renal decline associated with kidney dysfunction and chronic kidney disease (CKD). [9] In CKD, phenylacetylglutamine is considered a uremic toxin which is taken up, circulated and retained in the blood after microbial fermentation of certain proteins and amino acids in the gut. [10] Blood serum levels of phenylacetylglutamine in CKD are used as a mortality determinant. Blood plasma levels of phenylacetylglutamine increase with exposure to cigarette smoke, in patients with ischemic heart failure, with cardiovascular risk or hypertension, in the development of renal disease, and in patients with type 2 diabetes. [9]
α-Ketoglutaric acid is a keto acid.
The urea cycle (also known as the ornithine cycle) is a cycle of biochemical reactions that produces urea (NH2)2CO from ammonia (NH3). Animals that use this cycle, mainly amphibians and mammals, are called ureotelic.
Ornithine transcarbamylase (OTC) is an enzyme that catalyzes the reaction between carbamoyl phosphate (CP) and ornithine (Orn) to form citrulline (Cit) and phosphate (Pi). There are two classes of OTC: anabolic and catabolic. This article focuses on anabolic OTC. Anabolic OTC facilitates the sixth step in the biosynthesis of the amino acid arginine in prokaryotes. In contrast, mammalian OTC plays an essential role in the urea cycle, the purpose of which is to capture toxic ammonia and transform it into urea, a less toxic nitrogen source, for excretion.
Uremia is the term for high levels of urea in the blood. Urea is one of the primary components of urine. It can be defined as an excess in the blood of amino acid and protein metabolism end products, such as urea and creatinine, which would be normally excreted in the urine. Uremic syndrome can be defined as the terminal clinical manifestation of kidney failure. It is the signs, symptoms and results from laboratory tests which result from inadequate excretory, regulatory, and endocrine function of the kidneys. Both uremia and uremic syndrome have been used interchangeably to denote a very high plasma urea concentration that is the result of renal failure. The former denotation will be used for the rest of the article.
Propionic acidemia, also known as propionic aciduria or propionyl-CoA carboxylase deficiency, is a rare autosomal recessive metabolic disorder, classified as a branched-chain organic acidemia.
Hyperammonemia is a metabolic disturbance characterised by an excess of ammonia in the blood. It is a dangerous condition that may lead to brain injury and death. It may be primary or secondary.
Ornithine transcarbamylase deficiency also known as OTC deficiency is the most common urea cycle disorder in humans. Ornithine transcarbamylase, the defective enzyme in this disorder, is the final enzyme in the proximal portion of the urea cycle, responsible for converting carbamoyl phosphate and ornithine into citrulline. OTC deficiency is inherited in an X-linked recessive manner, meaning males are more commonly affected than females.
Protein toxicity is the effect of the buildup of protein metabolic waste compounds, like urea, uric acid, ammonia, and creatinine. Protein toxicity has many causes, including urea cycle disorders, genetic mutations, excessive protein intake, and insufficient kidney function, such as chronic kidney disease and acute kidney injury. Symptoms of protein toxicity include unexplained vomiting and loss of appetite. Untreated protein toxicity can lead to serious complications such as seizures, encephalopathy, further kidney damage, and even death.
Phenylacetic acid, also known by various synonyms, is an organic compound containing a phenyl functional group and a carboxylic acid functional group. It is a white solid with a strong honey-like odor. Endogenously, it is a catabolite of phenylalanine. As a commercial chemical, because it can be used in the illicit production of phenylacetone, it is subject to controls in countries including the United States and China.
Argininosuccinate synthase or synthetase is an enzyme that catalyzes the synthesis of argininosuccinate from citrulline and aspartate. In humans, argininosuccinate synthase is encoded by the ASS gene located on chromosome 9.
Argininosuccinic aciduria is an inherited disorder that causes the accumulation of argininosuccinic acid in the blood and urine. Some patients may also have an elevation of ammonia, a toxic chemical, which can affect the nervous system. Argininosuccinic aciduria may become evident in the first few days of life because of high blood ammonia, or later in life presenting with "sparse" or "brittle" hair, developmental delay, and tremors.
Sodium phenylbutyrate, sold under the brand name Buphenyl among others, is a salt of an aromatic fatty acid, 4-phenylbutyrate (4-PBA) or 4-phenylbutyric acid. The compound is used to treat urea cycle disorders, because its metabolites offer an alternative pathway to the urea cycle to allow excretion of excess nitrogen.
N-Acetylglutamate synthase deficiency is an autosomal recessive urea cycle disorder.
Carbamoyl phosphate synthetase I deficiency is an autosomal recessive metabolic disorder that causes ammonia to accumulate in the blood due to a lack of the enzyme carbamoyl phosphate synthetase I. Ammonia, which is formed when proteins are broken down in the body, is toxic if the levels become too high. The nervous system is especially sensitive to the effects of excess ammonia.
Ornithine translocase deficiency, also called hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, is a rare autosomal recessive urea cycle disorder affecting the enzyme ornithine translocase, which causes ammonia to accumulate in the blood, a condition called hyperammonemia.
Orotic aciduria is a disease caused by an enzyme deficiency, resulting in a decreased ability to synthesize pyrimidines. It was the first described enzyme deficiency of the de novo pyrimidine synthesis pathway.
Argininemia is an autosomal recessive urea cycle disorder where a deficiency of the enzyme arginase causes a buildup of arginine and ammonia in the blood. Ammonia, which is formed when proteins are broken down in the body, is toxic if levels become too high; the nervous system is especially sensitive to the effects of excess ammonia.
Transient hyperammonemia of the newborn (THAN) is an idiopathic disorder occasionally present in preterm newborns but not always symptomatic. Continuous dialysis or hemofiltration have proven to be the most effective treatment. Nutritional support and sodium benzoate have also been used to treat THAN.
L-Homocitrulline is an amino acid and a metabolite of ornithine in mammalian metabolism. The amino acid can be detected in larger amounts in the urine of individuals with urea cycle disorders. At present, it is thought that the depletion of the ornithine supply causes the accumulation of carbamyl-phosphate in the urea cycle which may be responsible for the enhanced synthesis of homocitrulline and homoarginine. Both amino acids can be detected in urine. Amino acid analysis allows for the quantitative analysis of these amino acid metabolites in biological fluids such as urine or blood.
Indoxyl sulfate, also known as 3-indoxylsulfate and 3-indoxylsulfuric acid, is a metabolite of dietary L-tryptophan that acts as a cardiotoxin and uremic toxin. High concentrations of indoxyl sulfate in blood plasma are known to be associated with the development and progression of chronic kidney disease and vascular disease in humans. As a uremic toxin, it stimulates glomerular sclerosis and renal interstitial fibrosis.