Photocatalytic water splitting

Last updated

Photocatalytic water splitting is a process that uses photocatalysis for the dissociation of water (H2O) into hydrogen (H
2
) and oxygen (O
2
). The inputs are light energy (photons), water, and a catalyst(s). The process is inspired by Photosynthesis, which converts water and carbon dioxide into oxygen and carbohydrates. Water splitting using solar radiation has not been commercialized. [1] Photocatalytic water splitting is done by dispersing photocatalyst particles in water or depositing them on a substrate, unlike Photoelectrochemical cell, which are assembled into a cell with a photoelectrode. [2] Hydrogen fuel production using water and light (photocatalytic water splitting), instead of petroleum, is an important renewable energy strategy.

Contents

Concepts

Water splitting is driven by the electron-hole pair generated by a photon. The bandgap is the energy difference between the conduction band minimum (CB) and the valence band maximum (VB). Electrocatalysts are added to reduce the overpotential of water splitting Water splitting with a photocatalyst.png
Water splitting is driven by the electron-hole pair generated by a photon. The bandgap is the energy difference between the conduction band minimum (CB) and the valence band maximum (VB). Electrocatalysts are added to reduce the overpotential of water splitting

Two mole of H2O is split into 1 mole O
2
and 2 mole H
2
using light in the process shown below.

A photon with an energy greater than 1.23 eV is needed to generate an electron–hole pairs, which react with water on the surface of the photocatalyst. The photocatalyst must have a bandgap large enough to split water; in practice, losses from material internal resistance and the overpotential of the water splitting reaction increase the required bandgap energy to 1.6–2.4 eV to drive water splitting. [2]

The process of water-splitting is a highly endothermic process (ΔH > 0). Water splitting occurs naturally in photosynthesis when the energy of four photons is absorbed and converted into chemical energy through a complex biochemical pathway (Dolai's or Kok's S-state diagrams). [3]

O–H bond homolysis in water requires energy of 6.5 - 6.9 eV (UV photon). [4] [5] Infrared light has sufficient energy to mediate water splitting because it technically has enough energy for the net reaction. However, it does not have enough energy to mediate the elementary reactions leading to the various intermediates involved in water splitting (this is why there is still water on Earth). Nature overcomes this challenge by absorbing four visible photons. In the laboratory, this challenge is typically overcome by coupling the hydrogen production reaction with a sacrificial reductant other than water. [6]

Materials used in photocatalytic water splitting fulfill the band requirements and typically have dopants and/or co-catalysts added to optimize their performance. A sample semiconductor with the proper band structure is titanium dioxide (TiO
2
) and is typically used with a co-catalyst such as platinum (Pt) to increase the rate of H
2
production. [7] A major problem in photocatalytic water splitting is photocatalyst decomposition and corrosion. [7]

Method of evaluation

Photocatalysts must conform to several key principles in order to be considered effective at water splitting. A key principle is that H
2
and O
2
evolution should occur in a stoichiometric 2:1 ratio; significant deviation could be due to a flaw in the experimental setup and/or a side reaction, neither of which indicate a reliable photocatalyst for water splitting. The prime measure of photocatalyst effectiveness is quantum yield (QY), which is:

QY (%) = (Photochemical reaction rate) / (Photon absorption rate) × 100% [7]

To assist in comparison, the rate of gas evolution can also be used. A photocatalyst that has a high quantum yield and gives a high rate of gas evolution is a better catalyst.

The other important factor for a photocatalyst is the range of light that is effective for operation. For example, a photocatalyst is more desirable to use visible photons than UV photons.

Photocatalysts

The efficiency of solar-to-hydrogen (STH) of photocatalytic water splitting, however, has remained very low.

Gallium-indium nitride

A STH efficiency of 9.2% indium. [8]

NaTaO
3
:La

NaTaO
3
:La yielded the highest water splitting rate of photocatalysts without using sacrificial reagents. [7] This ultraviolet-based photocatalyst was reported to show water splitting rates of 9.7 mmol/h and a quantum yield of 56%. The nanostep structure of the material promotes water splitting as edges functioned as H
2
production sites and the grooves functioned as O
2
production sites. Addition of NiO particles as co-catalysts assisted in H
2
production; this step used an impregnation method with an aqueous solution of Ni(NO
3
)
2
•6H
2
O
and evaporated the solution in the presence of the photocatalyst. NaTaO
3
has a conduction band higher than that of NiO, so photo-generated electrons are more easily transferred to the conduction band of NiO for H
2
evolution. [9]

K
3
Ta
3
B
2
O
12

K
3
Ta
3
B
2
O
12
is another catalyst solely activated by UV and above light. It does not have the performance or quantum yield of NaTaO
3
:La. However, it can split water without the assistance of co-catalysts and gives a quantum yield of 6.5%, along with a water splitting rate of 1.21 mmol/h. This ability is due to the pillared structure of the photocatalyst, which involves TaO
6
pillars connected by BO
3
triangle units. Loading with NiO did not assist the photocatalyst due to the highly active H
2
evolution sites. [10]

(Ga
.82
Zn
.18
)(N
.82
O
.18
)

(Ga
.82
Zn
.18
)(N
.82
O
.18
) had the highest quantum yield in visible light for visible light-based photocatalysts that do not utilize sacrificial reagents as of October 2008. [7] The photocatalyst featured a quantum yield of 5.9% and a water splitting rate of 0.4 mmol/h. Tuning the catalyst was done by increasing calcination temperatures for the final step in synthesizing the catalyst. Temperatures up to 600 °C helped to reduce the number of defects, while temperatures above 700 °C destroyed the local structure around zinc atoms and were thus undesirable. The treatment ultimately reduced the amount of surface Zn and O defects, which normally function as recombination sites, thus limiting photocatalytic activity. The catalyst was then loaded with Rh
2-y
Cr
y
O
3
at a rate of 2.5 wt% Rh and 2 wt% Cr for better performance. [11]

Molecular catalysts

Proton reduction catalysts based on earth-abundant elements [12] [13] carry out one side of the water-splitting half-reaction.

A mole of octahedral nickel(II) complex, [Ni(bztpen)]2+ (bztpen = N-benzyl-N,N’,N’-tris(pyridine-2-ylmethyl)ethylenediamine) produced 308,000 moles of hydrogen over 60 hours of electrolysis with an applied potential of -1.25 V vs. standard hydrogen electrode. [14]

Ru(II) with three 2,2'-bipyridine ligands is a common compound for photosensitization used for photocatalytic oxidative transformations like water splitting. However, the bipyridine degrades due to the strongly oxidative conditions which causes the concentration of Ru(bpy)32+ to diminish. Measurements of the degradation is difficult with UV-Vis spectroscopy but MALDI MS can be used instead. [15]

Cobalt-based photocatalysts have been reported, [16] including tris(bipyridine) cobalt(II), compounds of cobalt ligated to certain cyclic polyamines, and some cobaloximes.

In 2014 researchers announced an approach that connected a chromophore to part of a larger organic ring that surrounded a cobalt atom. The process is less efficient than a platinum catalyst although cobalt is less expensive, potentially reducing costs. The process uses one of two supramolecular assemblies based on Co(II)-templated coordination of Ru(bpy)+32 (bpy = 2,2′-bipyridyl) analogues as photosensitizers and electron donors to a cobaloxime macrocycle. The Co(II) centers of both assemblies are high spin, in contrast to most previously described cobaloximes. Transient absorption optical spectroscopies indicate that charge recombination occurs through multiple ligand states within the photosensitizer modules. [17] [18]

Bismuth vanadate

Bismuth vanadate is a visible-light-driven photocatalyst with a bandgap of 2.4 eV. [19] [20] BV have demonstrated efficiencies of 5.2% for flat thin films [21] [22] and 8.2% for core-shell WO3@BiVO4 nanorods with thin absorbers. [23] [24] [25]

Bismuth oxides

Bismuth oxides are characterized by visible light absorption properties, just like vanadates. [26] [27]

Tungsten diselenide (WSe2)

Tungsten diselenide has photocatalytic properties that might be a key to more efficient electrolysis. [28]

III-V semiconductor systems

Systems based on III-V semiconductors, such as InGaP, enable solar-to-hydrogen efficiencies of up to 14%. [29] Challenges include long-term stability and cost.

2D semiconductor systems

2-dimensional semiconductors such as MoS
2
are actively researched as potential photocatalysts. [30] [31]

Aluminum‐based metal-organic frameworks

An aluminum‐based metal-organic framework made from 2‐aminoterephthalate can be modified by incorporating Ni2+ cations into the pores through coordination with the amino groups. [32] Molybdenum disulfide

Porous organic polymers

Organic semiconductor photocatalysts, in particular porous organic polymers (POPs), attracted attention due to their low cost, low toxicity, and tunable light absorption vs inorganic counterparts. [33] [34] [35] They display high porosity, low density, diverse composition, facile functionalization, high chemical/thermal stability, as well as high surface areas. [36] Efficient conversion of hydrophobic polymers into hydrophilic polymer nano-dots (Pdots) increased polymer-water interfacial contact, which significantly improved performance. [37] [38] [39]

Ansa-Titanocene(III/IV) Triflate Complexes

Beweries, et al., developed a light-driven "closed cycle of water splitting using ansa-titanocene(III/IV) triflate complexes". [40]

Indium gallium nitride

An Indium gallium nitride (In x Ga1-x N) photocatalyst achieved a solar-to-hydrogen efficiency of 9.2% from pure water and concentrated sunlight. The effiency is due to the synergistic effects of promoting hydrogen–oxygen evolution and inhibiting recombination by operating at an optimal reaction temperature (~70 degrees C), powered by harvesting previously wasted infrared light. An STH efficiency of about 7% was realized from tap water and seawater and efficiency of 6.2% in a larger-scale system with a solar light capacity of 257 watts. [41]

Sacrificial reagents

Cd
1-x
Zn
x
S

Solid solutions Cd
1-x
Zn
x
S
with different Zn concentration (0.2 < x < 0.35) have been investigated in the production of hydrogen from aqueous solutions containing as sacrificial reagents under visible light. [42] Textural, structural and surface catalyst properties were determined by N
2
adsorption isotherms, UV–vis spectroscopy, SEM and XRD and related to the activity results in hydrogen production from water splitting under visible light. It was reported that the crystallinity and energy band structure of the Cd
1-x
Zn
x
S
solid solutions depend on their Zn atomic concentration. The hydrogen production rate increased gradually as Zn concentration on photocatalysts increased from 0.2 to 0.3. The subsequent increase in the Zn fraction up to 0.35 reduced production. Variation in photoactivity was analyzed for changes in crystallinity, level of the conduction band and light absorption ability of Cd
1-x
Zn
x
S
solid solutions derived from their Zn atomic concentration.

Further reading

See also

Related Research Articles

A "photoelectrochemical cell" is one of two distinct classes of device. The first produces electrical energy similarly to a dye-sensitized photovoltaic cell, which meets the standard definition of a photovoltaic cell. The second is a photoelectrolytic cell, that is, a device which uses light incident on a photosensitizer, semiconductor, or aqueous metal immersed in an electrolytic solution to directly cause a chemical reaction, for example to produce hydrogen via the electrolysis of water.

Artificial photosynthesis is a chemical process that biomimics the natural process of photosynthesis. The term artificial photosynthesis is used loosely, refer to any scheme for capturing and storing energy from sunlight by producing a fuel, specifically a solar fuel. An advantage of artificial photosynthesis is that the solar energy can be immediately converted and stored. By contrast, using photovoltaic cells, sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary losses of energy associated with the second conversion. The byproducts of these reactions are environmentally friendly. Artificially photosynthesized fuel would be a carbon-neutral source of energy, which could be used for transportation or homes. The economics of artificial photosynthesis are not competitive.

<span class="mw-page-title-main">Water splitting</span> Chemical reaction

Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen:

<span class="mw-page-title-main">Photocatalysis</span> Acceleration of a photoreaction in the presence of a catalyst

In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a photocatalyst, the excited state of which "repeatedly interacts with the reaction partners forming reaction intermediates and regenerates itself after each cycle of such interactions." In many cases, the catalyst is a solid that upon irradiation with UV- or visible light generates electron–hole pairs that generate free radicals. Photocatalysts belong to three main groups; heterogeneous, homogeneous, and plasmonic antenna-reactor catalysts. The use of each catalysts depends on the preferred application and required catalysis reaction.

<span class="mw-page-title-main">Photosensitizer</span> Type of molecule reacting to light

Photosensitizers are light absorbers that alter the course of a photochemical reaction. They usually are catalysts. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its ground state, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is polymer chemistry, using photosensitizers in reactions such as photopolymerization, photocrosslinking, and photodegradation. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in photocatalysis, photon upconversion and photodynamic therapy. Generally, photosensitizers absorb electromagnetic radiation consisting of infrared radiation, visible light radiation, and ultraviolet radiation and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large de-localized π-systems, which lowers the energy of HOMO and LUMO orbitals to promote photoexcitation. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor quantum dots as photosensitizers.

Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles.

Hydrogen gas is produced by several industrial methods. Fossil fuels are the dominant source of hydrogen. As of 2020, the majority of hydrogen (~95%) is produced by steam reforming of natural gas and other light hydrocarbons, and partial oxidation of heavier hydrocarbons. Other methods of hydrogen production include biomass gasification and methane pyrolysis. Methane pyrolysis and water electrolysis can use any source of electricity including renewable energy.

Photochemical reduction of carbon dioxide harnesses solar energy to convert CO2 into higher-energy products. Environmental interest in producing artificial systems is motivated by recognition that CO2 is a greenhouse gas. The process has not been commercialized.

Photoelectrochemistry is a subfield of study within physical chemistry concerned with the interaction of light with electrochemical systems. It is an active domain of investigation. One of the pioneers of this field of electrochemistry was the German electrochemist Heinz Gerischer. The interest in this domain is high in the context of development of renewable energy conversion and storage technology.

<span class="mw-page-title-main">Graphitic carbon nitride</span> Class of chemical compounds

Graphitic carbon nitride (g-C3N4) is a family of carbon nitride compounds with a general formula near to C3N4 (albeit typically with non-zero amounts of hydrogen) and two major substructures based on heptazine and poly(triazine imide) units which, depending on reaction conditions, exhibit different degrees of condensation, properties and reactivities.

A solar fuel is a synthetic chemical fuel produced from solar energy. Solar fuels can be produced through photochemical, photobiological, and electrochemical reactions.

<span class="mw-page-title-main">Bismuth vanadate</span> Chemical compound

Bismuth vanadate is the inorganic compound with the formula BiVO4. It is a bright yellow solid. It is widely studied as visible light photo-catalyst with a narrow band gap of less than 2.4 eV. It is a representative of "complex inorganic colored pigments," or CICPs. More specifically, bismuth vanadate is a mixed-metal oxide. Bismuth vanadate is also known under the Colour Index International as C.I. Pigment Yellow 184. It occurs naturally as the rare minerals pucherite, clinobisvanite, and dreyerite.

<span class="mw-page-title-main">Photoredox catalysis</span>

Photoredox catalysis is a branch of photochemistry that uses single-electron transfer. Photoredox catalysts are generally drawn from three classes of materials: transition-metal complexes, organic dyes, and semiconductors. While organic photoredox catalysts were dominant throughout the 1990s and early 2000s, soluble transition-metal complexes are more commonly used today.

<span class="mw-page-title-main">Photogeochemistry</span>

Photogeochemistry merges photochemistry and geochemistry into the study of light-induced chemical reactions that occur or may occur among natural components of Earth's surface. The first comprehensive review on the subject was published in 2017 by the chemist and soil scientist Timothy A Doane, but the term photogeochemistry appeared a few years earlier as a keyword in studies that described the role of light-induced mineral transformations in shaping the biogeochemistry of Earth; this indeed describes the core of photogeochemical study, although other facets may be admitted into the definition.

<span class="mw-page-title-main">Water oxidation catalysis</span>

Water oxidation catalysis (WOC) is the acceleration (catalysis) of the conversion of water into oxygen and protons:

Light harvesting materials harvest solar energy that can then be converted into chemical energy through photochemical processes. Synthetic light harvesting materials are inspired by photosynthetic biological systems such as light harvesting complexes and pigments that are present in plants and some photosynthetic bacteria. The dynamic and efficient antenna complexes that are present in photosynthetic organisms has inspired the design of synthetic light harvesting materials that mimic light harvesting machinery in biological systems. Examples of synthetic light harvesting materials are dendrimers, porphyrin arrays and assemblies, organic gels, biosynthetic and synthetic peptides, organic-inorganic hybrid materials, and semiconductor materials. Synthetic and biosynthetic light harvesting materials have applications in photovoltaics, photocatalysis, and photopolymerization.

In chemistry, plasmonic catalysis is a type of catalysis that uses plasmons to increase the rate of a chemical reaction. A plasmonic catalyst is made up of a metal nanoparticle surface which generates localized surface plasmon resonances (LSPRs) when excited by light. These plasmon oscillations create an electron-rich region near the surface of the nanoparticle, which can be used to excite the electrons of nearby molecules.

Jinhua Ye is a Chinese chemist who is a professor at the National Institute for Materials Science in Tsukuba. Her research considers high-temperature superconductors for photocatalysis. She was elected Fellow of the Royal Society of Chemistry in 2016 and has been included in the Clarivate Analytics Highly Cited Researcher every year since then.

Stafford W. Sheehan is an American scientist and entrepreneur, a co-founder and chief technology officer of Air Company. He developed a heterogeneous catalysis process to convert carbon dioxide into ethanol that his company has used to produce vodka and other consumer products as well as jet fuel.

Solar reforming is the sunlight-driven conversion of diverse carbon waste resources into sustainable fuels and value-added chemicals. It encompasses a set of technologies operating under ambient and aqueous conditions, utilizing solar spectrum to generate maximum value. Solar reforming offers an attractive and unifying solution to address the contemporary challenges of climate change and environmental pollution by creating a sustainable circular network of waste upcycling, clean fuel generation and the consequent mitigation of greenhouse emissions.

References

  1. Kudo, Akihiko; Miseki, Yugo (2009). "Heterogeneous photocatalyst materials for water splitting". Chem. Soc. Rev. 38 (1): 253–278. doi:10.1039/b800489g. PMID   19088977.
  2. 1 2 Kim, Jin Hyun; Hansora, Dharmesh; Sharma, Pankaj; Jang, Ji-Wook; Lee, Jae Sung (2019). "Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge". Chemical Society Reviews. 48 (7): 1908–1971. doi:10.1039/c8cs00699g. PMID   30855624.
  3. Yano, Junko; Yachandra, Vittal (2014-04-23). "Mn 4 Ca Cluster in Photosynthesis: Where and How Water is Oxidized to Dioxygen". Chemical Reviews. 114 (8): 4175–4205. doi:10.1021/cr4004874. ISSN   0009-2665. PMC   4002066 . PMID   24684576.
  4. Gligorovski, Sasho; Strekowski, Rafal; Barbati, Stephane; Vione, Davide (2015-12-23). "Environmental Implications of Hydroxyl Radicals ( • OH)". Chemical Reviews. 115 (24): 13051–13092. doi:10.1021/cr500310b. ISSN   0009-2665. PMID   26630000.
  5. Fujishima, Akira (13 September 1971). "Electrochemical Photolysis of Water at a Semiconductor Electrode". Nature. 238 (5358): 37–38. Bibcode:1972Natur.238...37F. doi:10.1038/238037a0. PMID   12635268. S2CID   4251015.
  6. Zhou, Dantong; Li, Dongxiang; Yuan, Shengpeng; Chen, Zhi (2022-08-25). "Recent Advances in Biomass-Based Photocatalytic H 2 Production and Efficient Photocatalysts: A Review". Energy & Fuels. 36 (18): 10721–10731. doi:10.1021/acs.energyfuels.2c01904. ISSN   0887-0624. S2CID   251852086.
  7. 1 2 3 4 5 Kudo, A.; Miseki, Y. (2009). "Heterogeneous photocatalyst materials for water splitting". Chem. Soc. Rev. 38 (1): 253–278. doi:10.1039/b800489g. PMID   19088977.
  8. Zhou, Peng; Navid, Ishtiaque Ahmed; Ma, Yongjin; Xiao, Yixin; Wang, Ping; Ye, Zhengwei; Zhou, Baowen; Sun, Kai; Mi, Zetian (January 2023). "Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting". Nature. 613 (7942): 66–70. Bibcode:2023Natur.613...66Z. doi:10.1038/s41586-022-05399-1. PMID   36600066.
  9. Kato, H.; Asakura, K.; Kudo, A. (2003). "Highly Efficient Water Splitting into H and O over Lanthanum-Doped NaTaO Photocatalysts with High Crystallinity and Surface Nanostructure". J. Am. Chem. Soc. 125 (10): 3082–3089. doi:10.1021/ja027751g. PMID   12617675.
  10. T. Kurihara, H. Okutomi, Y. Miseki, H. Kato, A. Kudo, "Highly Efficient Water Splitting over K
    3
    Ta
    3
    B
    2
    O
    12
    Photocatalyst without Loading Cocatalyst" Chem. Lett., 35, 274 (2006).
  11. K. Maeda, K. Teramura, K. Domen, "Effect of post-calcination on photocatalytic activity of (Ga
    1-x
    Zn
    x
    )(N
    1-x
    O
    x
    ) solid solution for overall water splitting under visible light" J. Catal., 254, 198 (2008).
  12. McKone, James R.; Marinescu, Smaranda C.; Brunschwig, Bruce S.; Winkler, Jay R.; Gray, Harry B. (2014). "Earth-abundant hydrogen evolution electrocatalysts". Chem. Sci. 5 (3): 865–878. doi:10.1039/C3SC51711J. ISSN   2041-6520.
  13. Sutra, P.; Igau, A. (April 2018). "Emerging Earth-abundant (Fe, Co, Ni, Cu) molecular complexes for solar fuel catalysis". Current Opinion in Green and Sustainable Chemistry. 10: 60–67. doi:10.1016/j.cogsc.2018.03.004.
  14. Zhang, Peili; Wang, Mei; Yang, Yong; Zheng, Dehua; Han, Kai; Sun, Licheng (2014). "Highly efficient molecular nickel catalysts for electrochemical hydrogen production from neutral water". Chem. Commun. 50 (91): 14153–14156. doi:10.1039/C4CC05511J. ISSN   1359-7345. PMID   25277377.
  15. Bergman, Nina; Thapper, Anders; Styring, Stenbjörn; Bergquist, Jonas; Shevchenko, Denys (2014). "Quantitative determination of the Ru(bpy) 3 2+ cation in photochemical reactions by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry". Anal. Methods. 6 (21): 8513–8518. doi:10.1039/C4AY01379D. ISSN   1759-9660.
  16. Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. (2011). "Splitting Water with Cobalt". Angewandte Chemie International Edition. 50 (32): 7238–7266. doi:10.1002/anie.201007987. PMID   21748828.
  17. Mukherjee, Anusree; Kokhan, Oleksandr; Huang, Jier; Niklas, Jens; Chen, Lin X.; Tiede, David M.; Mulfort, Karen L. (2013). "A less-expensive way to duplicate the complicated steps of photosynthesis in making fuel". Physical Chemistry Chemical Physics. 15 (48): 21070–6. Bibcode:2013PCCP...1521070M. doi:10.1039/C3CP54420F. PMID   24220293 . Retrieved 2014-01-23.
  18. Mukherjee, A.; Kokhan, O.; Huang, J.; Niklas, J.; Chen, L. X.; Tiede, D. M.; Mulfort, K. L. (2013). "Detection of a charge-separated catalyst precursor state in a linked photosensitizer-catalyst assembly". Physical Chemistry Chemical Physics . 15 (48): 21070–21076. Bibcode:2013PCCP...1521070M. doi:10.1039/C3CP54420F. PMID   24220293.
  19. Shafiq, Iqrash; Hussain, Murid; Shehzad, Nasir; Maafa, Ibrahim M.; Akhter, Parveen; Amjad, Um-e-salma; Shafique, Sumeer; Razzaq, Abdul; Yang, Wenshu; Tahir, Muhammad; Russo, Nunzio (August 2019). "The effect of crystal facets and induced porosity on the performance of monoclinic BiVO4 for the enhanced visible-light driven photocatalytic abatement of methylene blue". Journal of Environmental Chemical Engineering. 7 (4): 103265. doi:10.1016/j.jece.2019.103265. ISSN   2213-3437. S2CID   198742844.
  20. Shafiq, I. (2018). Mesoporous monoclinic BiVO4 for efficient visible light driven photocatalytic degradation of dyes (Doctoral dissertation, COMSATS University Islamabad, Lahore Campus.).
  21. Abdi, Fatwa F; Lihao Han; Arno H. M. Smets; Miro Zeman; Bernard Dam; Roel van de Krol (29 July 2013). "Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode". Nature Communications. 4: 2195. Bibcode:2013NatCo...4.2195A. doi: 10.1038/ncomms3195 . PMID   23893238.
  22. Han, Lihao; Abdi, Fatwa F.; van de Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Smets, Arno H. M. (2014). "Inside Cover: Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells (ChemSusChem 10/2014)". ChemSusChem. 7 (10): 2758. doi: 10.1002/cssc.201402901 .
  23. Pihosh, Yuriy; Turkevych, Ivan; Mawatari, Kazuma; Uemura, Jin; Kazoe, Yutaka; Kosar, Sonya; Makita, Kikuo; Sugaya, Takeyoshi; Matsui, Takuya; Fujita, Daisuke; Tosa, Masahiro (2015-06-08). "Photocatalytic generation of hydrogen by core-shell WO 3 /BiVO 4 nanorods with ultimate water splitting efficiency". Scientific Reports. 5 (1): 11141. Bibcode:2015NatSR...511141P. doi:10.1038/srep11141. ISSN   2045-2322. PMC   4459147 . PMID   26053164.
  24. Kosar, Sonya; Pihosh, Yuriy; Turkevych, Ivan; Mawatari, Kazuma; Uemura, Jin; Kazoe, Yutaka; Makita, Kikuo; Sugaya, Takeyoshi; Matsui, Takuya; Fujita, Daisuke; Tosa, Masahiro (2016-02-25). "Tandem photovoltaic–photoelectrochemical GaAs/InGaAsP–WO3/BiVO4device for solar hydrogen generation". Japanese Journal of Applied Physics. 55 (4S): 04ES01. Bibcode:2016JaJAP..55dES01K. doi:10.7567/jjap.55.04es01. ISSN   0021-4922. S2CID   125395272.
  25. Kosar, Sonya; Pihosh, Yuriy; Bekarevich, Raman; Mitsuishi, Kazutaka; Mawatari, Kazuma; Kazoe, Yutaka; Kitamori, Takehiko; Tosa, Masahiro; Tarasov, Alexey B.; Goodilin, Eugene A.; Struk, Yaroslav M. (2019-07-01). "Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods". Applied Nanoscience. 9 (5): 1017–1024. Bibcode:2019ApNan...9.1017K. doi:10.1007/s13204-018-0759-z. ISSN   2190-5517. S2CID   139703154.
  26. Ropero-Vega, J.L.; Pedraza-Avella, J.A.; Niño-Gómez, M.E. (September 2015). "Hydrogen production by photoelectrolysis of aqueous solutions of phenol using mixed oxide semiconductor films of Bi–Nb–M–O (M=Al, Fe, Ga, In) as photoanodes". Catalysis Today. 252: 150–156. doi:10.1016/j.cattod.2014.11.007.
  27. Ropero-Vega, J. L.; Meléndez, A. M.; Pedraza-Avella, J. A.; Candal, Roberto J.; Niño-Gómez, M. E. (July 2014). "Mixed oxide semiconductors based on bismuth for photoelectrochemical applications". Journal of Solid State Electrochemistry. 18 (7): 1963–1971. doi:10.1007/s10008-014-2420-4. hdl: 11336/31744 . ISSN   1432-8488. S2CID   95775856.
  28. "Discovery Brightens Solar's Future, Energy Costs to Be Cut". NBC News. NBC News from Reuters. July 2, 2015. Retrieved July 2, 2015.
  29. May, Matthias M; Hans-Joachim Lewerenz; David Lackner; Frank Dimroth; Thomas Hannappel (15 September 2015). "Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure". Nature Communications. 6: 8286. arXiv: 1508.01666 . Bibcode:2015NatCo...6.8286M. doi:10.1038/ncomms9286. PMC   4579846 . PMID   26369620.
  30. Luo, Bin; Liu, Gang; Wang, Lianzhou (2016). "Recent advances in 2D materials for photocatalysis". Nanoscale. 8 (13): 6904–6920. Bibcode:2016Nanos...8.6904L. doi:10.1039/C6NR00546B. ISSN   2040-3364. PMID   26961514.
  31. Li, Yunguo; Li, Yan-Ling; Sa, Baisheng; Ahuja, Rajeev (2017). "Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective". Catalysis Science & Technology. 7 (3): 545–559. doi:10.1039/C6CY02178F. ISSN   2044-4753.
  32. "Ni(2) Coordination to an Al‐Based Metal–Organic Framework Made from 2‐Aminoterephthalate for Photocatalytic Overall Water Splitting". Angewandte Chemie International Edition. 56 (11): 3036–3040. February 7, 2017. doi:10.1002/anie.201612423. PMID   28170148.
  33. Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. (2006-04-21). "Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice". Science. 312 (5772): 420–424. Bibcode:2006Sci...312..420K. doi: 10.1126/science.1125124 . ISSN   0036-8075. PMID   16497885.
  34. Martin, David James; Reardon, Philip James Thomas; Moniz, Savio J. A.; Tang, Junwang (2014-09-10). "Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System". Journal of the American Chemical Society. 136 (36): 12568–12571. doi: 10.1021/ja506386e . ISSN   0002-7863. PMID   25136991.
  35. Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.; Fairfield, Daniel J.; Koltonow, Andrew R.; Stupp, Samuel I. (2015-12-09). "Supramolecular Packing Controls H2 Photocatalysis in Chromophore Amphiphile Hydrogels". Journal of the American Chemical Society. 137 (48): 15241–15246. doi:10.1021/jacs.5b10027. ISSN   0002-7863. PMC   4676032 . PMID   26593389.
  36. Zhang, Ting; Xing, Guolong; Chen, Weiben; Chen, Long (2020-02-07). "Porous organic polymers: a promising platform for efficient photocatalysis". Materials Chemistry Frontiers. 4 (2): 332–353. doi: 10.1039/C9QM00633H . ISSN   2052-1537.
  37. Wang, Lei; Fernández‐Terán, Ricardo; Zhang, Lei; Fernandes, Daniel L. A.; Tian, Lei; Chen, Hong; Tian, Haining (2016). "Organic Polymer Dots as Photocatalysts for Visible Light-Driven Hydrogen Generation". Angewandte Chemie International Edition. 55 (40): 12306–12310. doi:10.1002/anie.201607018. ISSN   1521-3773. PMID   27604393.
  38. Pati, Palas Baran; Damas, Giane; Tian, Lei; Fernandes, Daniel L. A.; Zhang, Lei; Pehlivan, Ilknur Bayrak; Edvinsson, Tomas; Araujo, C. Moyses; Tian, Haining (2017-06-14). "An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution". Energy & Environmental Science. 10 (6): 1372–1376. doi: 10.1039/C7EE00751E . ISSN   1754-5706.
  39. Rahman, Mohammad; Tian, Haining; Edvinsson, Tomas (2020). "Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts". Angewandte Chemie International Edition. 59 (38): 16278–16293. doi:10.1002/anie.202002561. ISSN   1521-3773. PMC   7540687 . PMID   32329950.
  40. Godemann, Christian; Hollmann, Dirk; Kessler, Monty; Jiao, Haijun; Spannenberg, Anke; Brückner, Angelika; Beweries, Torsten (2015-12-30). "A Model of a Closed Cycle of Water Splitting Using ansa -Titanocene(III/IV) Triflate Complexes". Journal of the American Chemical Society. 137 (51): 16187–16195. doi:10.1021/jacs.5b11365. ISSN   0002-7863. PMID   26641723.
  41. Zhou, Peng; Navid, Ishtiaque Ahmed; Ma, Yongjin; Xiao, Yixin; Wang, Ping; Ye, Zhengwei; Zhou, Baowen; Sun, Kai; Mi, Zetian (January 2023). "Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting". Nature. 613 (7942): 66–70. Bibcode:2023Natur.613...66Z. doi:10.1038/s41586-022-05399-1. ISSN   1476-4687. PMID   36600066. S2CID   255474993.
  42. del Valle, F.; Ishikawa, A.; Domen, K.; Villoria De La Mano, J.A.; Sánchez-Sánchez, M.C.; González, I.D.; Herreras, S.; Mota, N.; Rivas, M.E. (May 2009). "Influence of Zn concentration in the activity of Cd1-xZnxS solid solutions for water splitting under visible light". Catalysis Today. 143 (1–2): 51–59. doi:10.1016/j.cattod.2008.09.024.