Phytodinosauria

Last updated

Phytodinosauria
Temporal range: Late Triassic–Late Cretaceous
Brontosaurus Yale Peabody cropped.jpg
Holotype specimen of Brontosaurus excelsus (YPM 1980), Peabody Museum of Natural History
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Phytodinosauria
Bakker, 1986
Subgroups

Phytodinosauria is a group of dinosaurs proposed in 1986, combining the Sauropodomorpha and Ornithischia as sister groups, conceptualized as a superorder of herbivorous dinosaurs excluding the carnivorous Theropoda. This hypothesis has been refuted by modern cladistic analysis, showing such a group to be polyphyletic. Modern studies either combine the Theropoda and Sauropodormorpha in the Saurischia or the Theropoda and Ornithischia in the Ornithoscelida.

Contents

History

In 1888, Harry Govier Seeley divided the Dinosauria into two groups, the Saurischia and the Ornithischia, based on the structure of their pelvis. [1] Since then, it became common to keep these groups separate, even to the extent of considering the Dinosauria to be polyphyletic, not forming a natural group but being just an informal name for unrelated large Archosauria. [2]

Phytodinosauria was coined by Robert T. Bakker. Dr. Bob Bakker cropped.jpg
Phytodinosauria was coined by Robert T. Bakker.

In 1974 however, Robert "Bob" Bakker and Peter Malcolm Galton successfully defended the monophyly of the Dinosauria, arguing that the Saurischia and Ornithischia were real sister groups. [2] While discussing this hypothesis in 1976, both Alan Jack Charig and José Fernando Bonaparte pointed out that the saurischian pelvic shape is not a valid diagnostic new trait or synapomorphy but a basal character inherited from reptilian ancestors or symplesiomorphy, which suggested the possibility that the two main saurischian groups, the Theropoda and Sauropodomorpha, are not closely related. [3] [4]

Bakker and Galton had based their analysis on a study of the basal sauropodomorph Anchisaurus , showing that it had many traits in common with the Ornithischia. Bakker now began to consider the possibility that, in view of the lack of proof for a close relationship between theropods and sauropodomorphs, the 1974 study indicated that Sauropodomorpha were more closely related to the ornithischian dinosaurs than to theropods. In 1986, Bakker openly proposed this in his book The Dinosaur Heresies:

Therefore all the plant-eating dinosaurs of every sort really constitute one, single, natural group branching out from one ancestor, a primitive anchisaurlike dinosaur. And a new name is required for this grand family of vegetarians. So I hereby christen them the Phytodinosauria, the "plant dinosaurs".

Both sauropodomorphs and ornithischians are characterized by their “blunt, spoon-crowned teeth suitable for cropping plants” and these would not be an instance of convergent evolution, both groups adapting to a herbivorous mode of living, but a sign they were descended from a plant-eating common ancestor. Bakker classified the Phytodinosauria as a superorder of mostly herbivorous dinosaurs within the Dinosauria. [5]

Even before 1986, authors had combined the sauropodomorphs and ornithischians. Freelance researcher Gregory S. Paul in 1984 considered therizinosaurs — then known as "segnosaurs" — to be the "relics of the prosauropod-ornithischian transition". [6] In his 1988 book Predatory Dinosaurs of the World: A Complete Illustrated Guide he repeated his hypothesis that therizinosaurs were late-surviving basal sauropodomorphs. [7] In 1985, Michael Robert Cooper placed the sauropodomorphs and ornithischians in a cohort Ornithischiformes. This was based on two synapomorphies, regarding the shape and placement of the teeth. [8]

Bonaparte, Bakker, and Paul argued that ornithischians were descended from basal sauropodomorphs, with segnosaurs being transitional taxa as depicted in the phylogeny below.

Dinosauria

Theropoda Avimimus mmartyniuk wiki.png

Phytodinosauria

Sauropodomorpha Brontosaurus by Tom Parker.png

Segnosauria F. utahensis reconstruction (flipped).jpg

Ornithischia Triceratops BW.jpg

The Phytodinosauria hypothesis is not supported by current data: most phylogenies maintain a monophyletic Saurischia. [9] In such a phylogeny therizinosaurs are maniraptoran dinosaurs more closely related to birds, and any similarity between sauropodomorphs and ornithischians is due to convergence. [10] In 2017, an analysis did split the Saurischia but to the contrary proposed that it were the theropods that are more closely related to ornithischians, instead of the sauropodomorphs. [11] However, in a series of additional phylogenetic analyses that were carried out by Parry, Baron and Vinther (2017), Phytodinosauria was recovered, but only when using certain optimality criteria and once certain modifications had been made to original morphological dataset of Baron, Norman and Barrett (2017). They recovered a polytomy showing herrerasaurs, Eodromaeus , Daemonosaurus , theropods, and a clade that includes Guaibasauridae and Phytodinosauria as shown below: [12]

Dinosauromorpha

Marasuchus Marasuchus flipped.jpg

unnamed

Silesauridae Silesaurus opolensis flipped.jpg

Dinosauria

Herrerasauridae Herrerasaurus BW flipped.jpg

Eodromaeus

Daemonosaurus

Theropoda Meyers grosses Konversations-Lexikon - ein Nachschlagewerk des allgemeinen Wissens (1908) (Antwerpener Breiftaube).jpg

Guaibasauridae

†Phytodinosauria

Ornithischia Triceratops BWMK.jpg

Sauropodomorpha Barapasaurus DB.jpg

See also

Related Research Articles

<span class="mw-page-title-main">Theropoda</span> Clade of dinosaurs

Theropoda, whose members are known as theropods, is a dinosaur clade that is characterized by hollow bones and three toes and claws on each limb. Theropods are generally classed as a group of saurischian dinosaurs. They were ancestrally carnivorous, although a number of theropod groups evolved to become herbivores and omnivores. Theropods first appeared during the Carnian age of the late Triassic period 231.4 million years ago (Ma) and included all the large terrestrial carnivores from the Early Jurassic until at least the close of the Cretaceous, about 66 Ma. In the Jurassic, birds evolved from small specialized coelurosaurian theropods, and are today represented by about 10,500 living species.

<span class="mw-page-title-main">Ornithischia</span> Order of dinosaurs

Ornithischia is an extinct order of mainly herbivorous dinosaurs characterized by a pelvic structure superficially similar to that of birds. The name Ornithischia, or "bird-hipped", reflects this similarity and is derived from the Greek stem ornith- (ὀρνιθ-), meaning "of a bird", and ischion (ἴσχιον), plural ischia, meaning "hip joint". However, birds are only distantly related to this group as birds are theropod dinosaurs. Ornithischians with well known anatomical adaptations include the ceratopsians or "horn-faced" dinosaurs, the pachycephalosaurs or "thick-headed" dinosaurs, the armored dinosaurs (Thyreophora) such as stegosaurs and ankylosaurs, and the ornithopods. There is strong evidence that certain groups of ornithischians lived in herds, often segregated by age group, with juveniles forming their own flocks separate from adults. Some were at least partially covered in filamentous pelts, and there is much debate over whether these filaments found in specimens of Tianyulong, Psittacosaurus, and Kulindadromeus may have been primitive feathers.

<i>Eoraptor</i> Extinct genus of dinosaurs

Eoraptor is a genus of small, lightly built, basal sauropodomorph. One of the earliest-known dinosaurs, it lived approximately 231 to 228 million years ago, during the Late Triassic in Western Gondwana, in the region that is now northwestern Argentina. The type and only species, Eoraptor lunensis, was first described in 1993, and is known from an almost complete and well-preserved skeleton and several fragmentary ones. Eoraptor had multiple tooth shapes, which suggests that it was omnivorous.

<i>Segnosaurus</i> Extinct genus of therizinosaurid dinosaur from late Cretaceous

Segnosaurus is a genus of therizinosaurid dinosaur that lived in what is now southeastern Mongolia during the Late Cretaceous, about 102–86 million years ago. Multiple incomplete but well-preserved specimens were discovered in the Gobi Desert in the 1970s, and in 1979 the genus and species Segnosaurus galbinensis were named. The generic name Segnosaurus means "slow lizard" and the specific name galbinensis refers to the Galbin region. The known material of this dinosaur includes the lower jaw, neck and tail vertebrae, the pelvis, shoulder girdle, and limb bones. Parts of the specimens have gone missing or become damaged since they were collected.

<span class="mw-page-title-main">Sauropodomorpha</span> Extinct clade of dinosaurs

Sauropodomorpha is an extinct clade of long-necked, herbivorous, saurischian dinosaurs that includes the sauropods and their ancestral relatives. Sauropods generally grew to very large sizes, had long necks and tails, were quadrupedal, and became the largest animals to ever walk the Earth. The prosauropods, which preceded the sauropods, were smaller and were often able to walk on two legs. The sauropodomorphs were the dominant terrestrial herbivores throughout much of the Mesozoic Era, from their origins in the Late Triassic until their decline and extinction at the end of the Cretaceous.

<i>Saturnalia tupiniquim</i> Extinct genus of dinosaurs

Saturnalia is an extinct genus of basal sauropodomorph dinosaur known from the Late Triassic Santa Maria Formation of Rio Grande do Sul, southern Brazil and possibly the Pebbly Arkose Formation, Zimbabwe.

<span class="mw-page-title-main">Herrerasauridae</span> Extinct family of basal saurischian dinosaurs

Herrerasauridae is a family of carnivorous dinosaurs, possibly basal to either theropods or even all of saurischians, or even their own branching from dracohors, separate from dinosauria altogether. They are among the oldest known dinosaurs, first appearing in the fossil record around 233.23 million years ago, before becoming extinct by the end of the Carnian stage. Herrerasaurids were relatively small-sized dinosaurs, normally no more than 4 metres (13 ft) long, although the holotype specimen of "Frenguellisaurus ischigualastensis" is thought to have reached around 6 meters long. The best known representatives of this group are from South America, where they were first discovered in the 1930s in relation to Staurikosaurus and 1960s in relation to Herrerasaurus. A nearly complete skeleton of Herrerasaurus ischigualastensis was discovered in the Ischigualasto Formation in San Juan, Argentina, in 1988. Less complete possible herrerasaurids have been found in North America, and they may have inhabited other continents as well.

<span class="mw-page-title-main">Therizinosauria</span> Extinct clade of dinosaurs

Therizinosaurs were large herbivorous theropod dinosaurs whose fossils have been found across the Early to Late Cretaceous deposits in Asia and North America. Various features of the forelimbs, skull and pelvis unite these finds as both theropods and maniraptorans, close relatives to birds. The name of the representative genus, Therizinosaurus, is derived from the Greek θερίζω and σαῦρος. The older representative, Segnosaurus, is derived from the Latin sēgnis ('slow') and the Greek σαῦρος.

<i>Herrerasaurus</i> Extinct genus of dinosaurs

Herrerasaurus is a genus of saurischian dinosaur from the Late Triassic period. This genus was one of the earliest dinosaurs from the fossil record. Its name means "Herrera's lizard", after the rancher who discovered the first specimen in 1958 in South America. All known fossils of this carnivore have been discovered in the Ischigualasto Formation of Carnian age in northwestern Argentina. The type species, Herrerasaurus ischigualastensis, was described by Osvaldo Reig in 1963 and is the only species assigned to the genus. Ischisaurus and Frenguellisaurus are synonyms.

<i>Guaibasaurus</i> Extinct genus of dinosaurs

Guaibasaurus is an extinct genus of basal saurischian dinosaur known from the Late Triassic Caturrita Formation of Rio Grande do Sul, southern Brazil. Most analyses recover it as a sauropodomorph, although there are some suggestions that it was a theropod instead. In 2016 Gregory S. Paul estimated it at 2 meters and 10 kg, whereas in 2020 Molina-Pérez and Larramendi listed it at 3 meters and 35 kg.

<i>Gresslyosaurus</i> Prosauropod dinosaur

Gresslyosaurus is a genus of plateosaurian sauropodomorph dinosaur that lived during the Late Triassic period, around 214 to 204 million years ago, in Switzerland.

Peter Malcolm Galton is a British vertebrate paleontologist who has to date written or co-written about 190 papers in scientific journals or chapters in paleontology textbooks, especially on ornithischian and prosauropod dinosaurs.

<span class="mw-page-title-main">Dinosauromorpha</span> Clade of reptiles

Dinosauromorpha is a clade of avemetatarsalian archosaurs that includes the Dinosauria (dinosaurs) and some of their close relatives. It was originally defined to include dinosauriforms and lagerpetids, with later formulations specifically excluding pterosaurs from the group. Birds are the only dinosauromorphs which survive to the present day.

<span class="mw-page-title-main">Saurischia</span> Clade of dinosaurs

Saurischia is one of the two basic divisions of dinosaurs, classified by their hip structure. Saurischia and Ornithischia were originally called orders by Harry Seeley in 1888 though today most paleontologists classify Saurischia as an unranked clade rather than an order.

<span class="mw-page-title-main">Guaibasauridae</span> Extinct family of dinosaurs

Guaibasauridae is a family of basal sauropodomorph dinosaurs, known from fossil remains of late Triassic period formations in Brazil and Argentina.

<span class="mw-page-title-main">Ornithoscelida</span> Clade of reptiles

Ornithoscelida is a proposed clade that includes various major groupings of dinosaurs. An order Ornithoscelida was originally proposed by Thomas Henry Huxley but later abandoned in favor of Harry Govier Seeley's division of Dinosauria into Saurischia and Ornithischia. The term was revived in 2017 after a new cladistic analysis by Baron et al.

<span class="mw-page-title-main">Saturnaliidae</span> Late Triassic dinosaur clade

Saturnaliidae is a family of basal sauropodomorph dinosaurs found in Brazil, Argentina and possibly Zimbabwe. It is not to be confused with Saturnalidae, a family of radiolarian protists.

The hyposphene-hypantrum articulation is an accessory joint found in the vertebrae of several fossil reptiles of the group Archosauromorpha. It consists of a process on the backside of the vertebrae, the hyposphene, that fits in a depression in the front side of the next vertebrae, the hypantrum. Hyposphene-hypantrum articulations occur in the dorsal vertebrae and sometimes also in the posteriormost cervical and anteriormost caudal vertebrae.

<i>Chilesaurus</i> Extinct genus of dinosaur

Chilesaurus is an extinct genus of herbivorous dinosaur. The type and only known species so far is Chilesaurus diegosuarezi. Chilesaurus lived about 145 million years ago (Mya) in the Late Jurassic period of Chile. Showing a combination of traits from theropods, ornithischians, and sauropodomorphs, this genus has far-reaching implications for the evolution of dinosaurs, such as whether the traditional saurischian-ornithischian split is superior or inferior to the proposed group Ornithoscelida.

<span class="mw-page-title-main">Timeline of therizinosaur research</span>

The timeline of therizinosaur research is a chronological listing of events in the history of paleontology focused on therizinosaurs. They were unusually long-necked, pot-bellied, and large-clawed herbivorous theropods most closely related to birds. The early history of therizinosaur research occurred in three phases. The first phase was the discovery of scanty and puzzling fossils in Asia by the Central Asiatic Expeditions of the 1920s and Soviet-backed research in the 1950s. This phase resulted in the discovery of the Therizinosaurus cheloniformis type specimen. Soviet paleontologist Evgeny Maleev interpreted these unusual remains as belonging to some kind of gigantic turtle.

References

  1. Seeley H.G. (1888). "On the classification of the fossil animals commonly named Dinosauria". Proceedings of the Royal Society of London. 43 (258–265): 165–171. Bibcode:1887RSPS...43..165S. doi: 10.1098/rspl.1887.0117 .
  2. 1 2 Bakker, Robert T.; Galton, Peter M. (1974). "Dinosaur monophyly and a new class of vertebrates". Nature. 248 (5444): 168–172. Bibcode:1974Natur.248..168B. doi:10.1038/248168a0. S2CID   4220935.
  3. Charig, A. J. (1976). "Dinosaur monophyly and a new class of vertebrates: A critical review". Morphology and Biology of Reptiles. London, UK. pp. 65–104.
  4. Bonaparte, J. F. (1976). "Pisanosaurus mertii Casamiquela and the origin of the Ornithischia". Journal of Paleontology. 50 (5): 808–820.
  5. Bakker, Robert T. (1986). The Dinosaur Heresies . William Morrow.
  6. Paul, G.S. (1984). "The segnosaurian dinosaurs: Relics of the prosauropod-ornithischian transition?". Journal of Vertebrate Paleontology. 4 (4): 507–515. doi:10.1080/02724634.1984.10012026.
  7. Paul, G. S. (1988). Predatory Dinosaurs of the World: A complete illustrated guide . Simon & Schuster.
  8. Cooper, M. R. (1985). "A revision of the Ornithischian dinosaur Kangnasaurus coetzeei Haughton, with a classification of the Ornithischia". Annals of the South African Museum. 95 (8): 281–317.
  9. Cabreira, S.F.; Kellner, A.W.A.; Dias-da-Silva, S.; da Silva, L.R.; Bronzati, M.; de Almeida Marsola, J.C.; Müller, R.T.; de Souza Bittencourt, J.; Batista, B.J.; Raugust, T.; Carrilho, R.; Brodt, A.; Langer, M.C. (2016). "A Unique Late Triassic Dinosauromorph Assemblage Reveals Dinosaur Ancestral Anatomy and Diet". Current Biology. 26 (22): 3090–3095. doi: 10.1016/j.cub.2016.09.040 . PMID   27839975.
  10. Russell, D.A.; Dong, Z. (1993). "The affinities of a new theropod from the Alxa Desert, Inner Mongolia, People's Republic of China". Canadian Journal of Earth Sciences. 30 (10): 2107–2127. Bibcode:1993CaJES..30.2107R. doi:10.1139/e93-183.
  11. Baron M.G., Norman D.B., Barrett P.M. (2017). "A new hypothesis of dinosaur relationships and early dinosaur evolution". Nature. 543 (7646): 501–506. Bibcode:2017Natur.543..501B. doi:10.1038/nature21700. PMID   28332513. S2CID   205254710.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Parry, Luke A.; Baron, Matthew G.; Vinther, Jakob (2017). "Multiple optimality criteria support Ornithoscelida". Royal Society Open Science. 4 (10): 170833. Bibcode:2017RSOS....470833P. doi:10.1098/rsos.170833. PMC   5666269 . PMID   29134086.