Phytofluene

Last updated
Phytofluene [1]
Phytofluene.png
Phytofluene-3D-balls-(rotated).png
Names
IUPAC name
15-cis-7,8,11,12,7′,8′-Hexahydro-ψ,ψ-carotene
Systematic IUPAC name
(6E,10E,12E,14E,16Z,18E,22E,26E)-2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene
Other names
15-cis-Phytofluene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C40H62/c1-33(2)19-13-23-37(7)27-17-31-39(9)29-15-25-35(5)21-11-12-22-36(6)26-16-30-40(10)32-18-28-38(8)24-14-20-34(3)4/h11-12,15,19-22,25,27-30H,13-14,16-18,23-24,26,31-32H2,1-10H3/b12-11-,25-15+,35-21+,36-22+,37-27+,38-28+,39-29+,40-30+ X mark.svgN
    Key: OVSVTCFNLSGAMM-DGFSHVNOSA-N X mark.svgN
  • CC(=CCC/C(=C/CC/C(=C/CC/C(=C/C=C\C=C(/C)\C=C\C=C(/C)\CC\C=C(/C)\CCC=C(C)C)/C)/C)/C)C
Properties
C40H62
Molar mass 542.936 g·mol−1
AppearanceViscous orange oil
Boiling point 140 to 185 °C (284 to 365 °F; 413 to 458 K) at 0.0001 mmHg
Insoluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Phytofluene is a colorless carotenoid found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. [2] It is formed from phytoene in a desaturation reaction leading to the formation of five conjugated double bonds. In the following step, addition of carbon-carbon conjugated double bonds leads to the formation of z-carotene and appearance of visible color.

Phytofluene has an absorption spectra in the UVA range, with maximal absorption at 348 nm and with ε1% of 1557.

Analysis of several fruits and vegetables showed that phytoene and phytofluene are found in majority of fruits and vegetables. [3] In contrast to all other carotenoids, phytoene and phytofluene, the first carotenoid precursors in the biosynthetic pathway of other carotenoids absorb light in the UV range.

Dietary phytoene and phytofluene are accumulated in human skin.[ citation needed ] The accumulation of these carotenoids may protect the skin by several mechanisms: acting as UV absorbers, as antioxidants, as anti-inflammatory agents. [4] [5]

Related Research Articles

<span class="mw-page-title-main">Carotene</span> Class of compounds

The term carotene (also carotin, from the Latin carota, "carrot") is used for many related unsaturated hydrocarbon substances having the formula C40Hx, which are synthesized by plants but in general cannot be made by animals (with the exception of some aphids and spider mites which acquired the synthesizing genes from fungi). Carotenes are photosynthetic pigments important for photosynthesis. Carotenes contain no oxygen atoms. They absorb ultraviolet, violet, and blue light and scatter orange or red light, and (in low concentrations) yellow light.

<span class="mw-page-title-main">Lycopene</span> Carotenoid pigment

Lycopene is an organic compound classified as a tetraterpene and a carotene. Lycopene is a bright red carotenoid hydrocarbon found in tomatoes and other red fruits and vegetables.

<span class="mw-page-title-main">Melanin</span> Group of natural pigments found in most organisms

Melanin is a broad term for a group of natural pigments found in most organisms. The melanin pigments are produced in a specialized group of cells known as melanocytes.

<span class="mw-page-title-main">Dietary fiber</span> Portion of plant-derived food that cannot be completely digested

Dietary fiber or roughage is the portion of plant-derived food that cannot be completely broken down by human digestive enzymes. Dietary fibers are diverse in chemical composition, and can be grouped generally by their solubility, viscosity, and fermentability, which affect how fibers are processed in the body. Dietary fiber has two main components: soluble fiber and insoluble fiber, which are components of plant-based foods, such as legumes, whole grains and cereals, vegetables, fruits, and nuts or seeds. A diet high in regular fiber consumption is generally associated with supporting health and lowering the risk of several diseases. Dietary fiber consists of non-starch polysaccharides and other plant components such as cellulose, resistant starch, resistant dextrins, inulin, lignins, chitins, pectins, beta-glucans, and oligosaccharides.

<span class="mw-page-title-main">Carotenoid</span> Class of chemical compounds; yellow, orange or red plant pigments

Carotenoids are yellow, orange, and red organic pigments that are produced by plants and algae, as well as several bacteria, archaea, and fungi. Carotenoids give the characteristic color to pumpkins, carrots, parsnips, corn, tomatoes, canaries, flamingos, salmon, lobster, shrimp, and daffodils. Over 1,100 identified carotenoids can be further categorized into two classes – xanthophylls and carotenes.

In organic chemistry, polyenes are poly-unsaturated, organic compounds that contain at least three alternating double and single carbon–carbon bonds. These carbon–carbon double bonds interact in a process known as conjugation, resulting in some unusual optical properties. Related to polyenes are dienes, where there are only two alternating double and single bonds.

<span class="mw-page-title-main">Phytochemical</span> Chemical compounds produced by plants

Phytochemicals are chemical compounds produced by plants, generally to help them resist fungi, bacteria and plant virus infections, and also consumption by insects and other animals. The name comes from Greek φυτόν (phyton) 'plant'. Some phytochemicals have been used as poisons and others as traditional medicine.

β-Carotene Red-orange pigment of the terpenoids class

β-Carotene (beta-carotene) is an organic, strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is a member of the carotenes, which are terpenoids (isoprenoids), synthesized biochemically from eight isoprene units and thus having 40 carbons. Among the carotenes, β-carotene is distinguished by having beta-rings at both ends of the molecule. β-Carotene is biosynthesized from geranylgeranyl pyrophosphate.

Fucoxanthin is a xanthophyll, with formula C42H58O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm.

<span class="mw-page-title-main">Stanol ester</span> Class of chemical compounds

Stanol esters is a heterogeneous group of chemical compounds known to reduce the level of low-density lipoprotein (LDL) cholesterol in blood when ingested, though to a much lesser degree than prescription drugs such as statins. The starting material is phytosterols from plants. These are first hydrogenated to give a plant stanol which is then esterified with a mixture of fatty acids also derived from plants. Plant stanol esters are found naturally occurring in small quantities in fruits, vegetables, nuts, seeds, cereals, legumes, and vegetable oils.

<span class="mw-page-title-main">Sunless tanning</span> Indoor tanning lotion

Sunless tanning, also known as UV filled tanning, self tanning, spray tanning, or fake tanning, refers to the effect of a suntan without exposure to the Sun. Sunless tanning involves the use of oral agents (carotenids), or creams, lotions or sprays applied to the skin. Skin-applied products may be skin-reactive agents or temporary bronzers (colorants).

<span class="mw-page-title-main">Chromophore</span> Part of a molecule responsible for its color

A chromophore is the part of a molecule responsible for its color. The color that is seen by our eyes is that of the light not absorbed by the reflecting object within a certain wavelength spectrum of visible light. The chromophore is a region in the molecule where the energy difference between two separate molecular orbitals falls within the range of the visible spectrum. Visible light that hits the chromophore can thus be absorbed by exciting an electron from its ground state into an excited state. In biological molecules that serve to capture or detect light energy, the chromophore is the moiety that causes a conformational change in the molecule when hit by light.

The vitamin E family comprises four tocotrienols and four tocopherols. The critical chemical structural difference between tocotrienols and tocopherols is that tocotrienols have unsaturated isoprenoid side chains with three carbon-carbon double bonds versus saturated side chains for tocopherols.

<span class="mw-page-title-main">Biological pigment</span> Substances produced by living organisms

Biological pigments, also known simply as pigments or biochromes, are substances produced by living organisms that have a color resulting from selective color absorption. Biological pigments include plant pigments and flower pigments. Many biological structures, such as skin, eyes, feathers, fur and hair contain pigments such as melanin in specialized cells called chromatophores. In some species, pigments accrue over very long periods during an individual's lifespan.

<span class="mw-page-title-main">Pyrimidine dimer</span> Type of damage to DNA

Pyrimidine dimers are molecular lesions formed from thymine or cytosine bases in DNA via photochemical reactions, commonly associated with direct DNA damage. Ultraviolet light induces the formation of covalent linkages between consecutive bases along the nucleotide chain in the vicinity of their carbon–carbon double bonds. The photo-coupled dimers are fluorescent. The dimerization reaction can also occur among pyrimidine bases in dsRNA —uracil or cytosine. Two common UV products are cyclobutane pyrimidine dimers (CPDs) and 6–4 photoproducts. These premutagenic lesions alter the structure of the DNA helix and cause non-canonical base pairing. Specifically, adjacent thymines or cytosines in DNA will form a cyclobutane ring when joined together and cause a distortion in the DNA. This distortion prevents replication or transcription machinery beyond the site of the dimerization. Up to 50–100 such reactions per second might occur in a skin cell during exposure to sunlight, but are usually corrected within seconds by photolyase reactivation or nucleotide excision repair. In humans, the most common form of DNA repair is nucleotide excision repair (NER). In contrast, organisms such as bacteria can counterintuitively harvest energy from the sun to fix DNA damage from pyrimidine dimers via photolyase activity. If these lesions are not fixed, polymerase machinery may misread or add in the incorrect nucleotide to the strand. If the damage to the DNA is overwhelming, mutations can arise within the genome of an organism and may lead to the production of cancer cells. Uncorrected lesions can inhibit polymerases, cause misreading during transcription or replication, or lead to arrest of replication. It causes sunburn and it triggers the production of melanin. Pyrimidine dimers are the primary cause of melanomas in humans.

<span class="mw-page-title-main">Phytoene</span> Chemical compound

Phytoene is a 40-carbon intermediate in the biosynthesis of carotenoids. The synthesis of phytoene is the first committed step in the synthesis of carotenoids in plants. Phytoene is produced from two molecules of geranylgeranyl pyrophosphate (GGPP) by the action of the enzyme phytoene synthase. The two GGPP molecules are condensed together followed by removal of diphosphate and proton shift leading to the formation of phytoene.

<span class="mw-page-title-main">15-Cis-phytoene desaturase</span> Class of enzymes

15-cis-phytoene desaturases, are enzymes involved in the carotenoid biosynthesis in plants and cyanobacteria. Phytoene desaturases are membrane-bound enzymes localized in plastids and introduce two double bonds into their colorless substrate phytoene by dehydrogenation and isomerize two additional double bonds. This reaction starts a biochemical pathway involving three further enzymes called the poly-cis pathway and leads to the red colored lycopene. The homologous phytoene desaturase found in bacteria and fungi (CrtI) converts phytoene directly to lycopene by an all-trans pathway.

Phytoene desaturase (neurosporene-forming) is an enzyme with systematic name 15-cis-phytoene:acceptor oxidoreductase (neurosporene-forming). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Phytoene desaturase (lycopene-forming)</span>

Phytoene desaturase (lycopene-forming) are enzymes found in archaea, bacteria and fungi that are involved in carotenoid biosynthesis. They catalyze the conversion of colorless 15-cis-phytoene into a bright red lycopene in a biochemical pathway called the poly-trans pathway. The same process in plants and cyanobacteria utilizes four separate enzymes in a poly-cis pathway.

<span class="mw-page-title-main">Fluridone</span> Chemical compound

Fluridone is an organic compound that is used as aquatic herbicide often used to control invasive plants. It is used in the United States to control hydrilla and Eurasian watermilfoil among other species. Fluridone is sold as a solution and as a slow release solid because the herbicide level must be maintained for several weeks. The compound is a colorless solid.

References

  1. Merck Index, 11th Edition, 7361.
  2. Tomato Metabolite Database, Cornell University
  3. Khachik, F., G.R. Beecher, M.B. Goli, and W.R. Lusby (1991). "Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography". Pure Appl. Chem. 63 (1): 71–80. doi: 10.1351/pac199163010071 . S2CID   36564853.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Aust, W. Stahl, H. Sies, H. Tronnier, U. Heinrich (2005). "Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema". Int J Vitam Nutr Res. 75 (1): 54–60. doi:10.1024/0300-9831.75.1.54. PMID   15830922.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. B. B. Fuller; D. R. Smith; A. J. Howerton; D. Kern (2006). "Anti-inflammatory effects of CoQ10 and colorless carotenoids". Journal of Cosmetic Dermatology. 5 (1): 30–38. doi:10.1111/j.1473-2165.2006.00220.x. PMID   17173569. S2CID   9407768.