Polyakov loop

Last updated

In quantum field theory, the Polyakov loop is the thermal analogue of the Wilson loop, acting as an order parameter for confinement in pure gauge theories at nonzero temperatures. In particular, it is a Wilson loop that winds around the compactified Euclidean temporal direction of a thermal quantum field theory. It indicates confinement because its vacuum expectation value must vanish in the confined phase due to its non-invariance under center gauge transformations. This also follows from the fact that the expectation value is related to the free energy of individual quarks, which diverges in this phase. Introduced by Alexander M. Polyakov in 1975, [1] they can also be used to study the potential between pairs of quarks at nonzero temperatures.

Contents

Definition

Thermal quantum field theory is formulated in Euclidean spacetime with a compactified imaginary temporal direction of length . This length corresponds to the inverse temperature of the field . Compactification leads to a special class of topologically nontrivial Wilson loops that wind around the compact direction known as Polyakov loops. [2] In theories a straight Polyakov loop on a spatial coordinate is given by

where is the path-ordering operator and is the Euclidean temporal component of the gauge field. In lattice field theory this operator is reformulated in terms of temporal link fields at a spatial position as [3]

The continuum limit of the lattice must be taken carefully to ensure that the compact direction has fixed extent. This is done by ensuring that the finite number of temporal lattice points is such that is constant as the lattice spacing goes to zero.

Order parameter

Scatter plot of the expectation value of the Polyakov line in a simulation of a
SU
(
3
)
{\displaystyle {\text{SU}}(3)}
gauge theory around the confinement phase transition. The red circle denotes the confining phase, while the blue and green circles denote the nonzero expectation values in the deconfined phase. There are three clusters in the deconfined phase due to the
Z
3
{\displaystyle \mathbb {Z} _{3}}
group center of the gauge group. Polyakov line as order parameter.svg
Scatter plot of the expectation value of the Polyakov line in a simulation of a gauge theory around the confinement phase transition. The red circle denotes the confining phase, while the blue and green circles denote the nonzero expectation values in the deconfined phase. There are three clusters in the deconfined phase due to the group center of the gauge group.

Gauge fields need to satisfy the periodicity condition in the compactified direction. Meanwhile, gauge transformations only need to satisfy this up to a group center term as . A change of basis can always diagonalize this so that for a complex number . The Polyakov loop is topologically nontrivial in the temporal direction so unlike other Wilson loops it transforms as under these transformations. [5] Since this makes the loop gauge dependent for , by Elitzur's theorem non-zero expectation values of imply that the center group must be spontaneously broken, implying confinement in pure gauge theory. This makes the Polyakov loop an order parameter for confinement in thermal pure gauge theory, with a confining phase occurring when and deconfining phase when . [6] For example, lattice calculations of quantum chromodynamics with infinitely heavy quarks that decouple from the theory shows that the deconfinement phase transition occurs at around a temperature of MeV. [7] Meanwhile, in a gauge theory with quarks, these break the center group and so confinement must instead be deduced from the spectrum of asymptotic states, the color neutral hadrons.

For gauge theories that lack a nontrivial group center that could be broken in the confining phase, the Polyakov loop expectation values are nonzero even in this phase. They are however still a good indicator of confinement since they generally experience a sharp jump at the phase transition. This is the case for example in the Higgs model with the exceptional gauge group . [8]

The Nambu–Jona-Lasinio model lacks local color symmetry and thus cannot capture the effects of confinement. However, Polyakov loops can be used to construct the Polyakov-loop-extended Nambu–Jona-Lasinio model which treats both the chiral condensate and the Polyakov loops as classical homogeneous fields that couple to quarks according to the symmetries and symmetry breaking patters of quantum chromodynamics. [9] [10] [11]

Quark free energy

The free energy of quarks and antiquarks, subtracting out the vacuum energy, is given in terms of the correlation functions of Polyakov loops [12]

This free energy is another way to see that the Polyakov loop acts as an order parameter for confinement since the free energy of a single quark is given by . [13] Confinement of quarks means that it would take an infinite amount of energy to create a configuration with a single free quark, therefore its free energy must be infinite and so the Polyakov loop expectation value must vanish in this phase, in agreement with the center symmetry breaking argument.

The formula for the free energy can also be used to calculate the potential between a pair of infinitely massive quarks spatially separated by . Here the potential is the first term in the free energy, so that the correlation function of two Polyakov loops is

where is the energy difference between the potential and the first excited state. In the confining phase the potential is linear , where the constant of proportionality is known as the string tension. The string tension acquired from the Polyakov loop is always bounded from above by the string tension acquired from the Wilson loop. [14]

See also

Related Research Articles

Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.

<span class="mw-page-title-main">Quantum chromodynamics</span> Theory of the strong nuclear interactions

In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

<span class="mw-page-title-main">Color confinement</span> Phenomenon in quantum chromodynamics

In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles cannot be isolated, and therefore cannot be directly observed in normal conditions below the Hagedorn temperature of approximately 2 terakelvin. Quarks and gluons must clump together to form hadrons. The two main types of hadron are the mesons and the baryons. In addition, colorless glueballs formed only of gluons are also consistent with confinement, though difficult to identify experimentally. Quarks and gluons cannot be separated from their parent hadron without producing new hadrons.

<span class="mw-page-title-main">Lattice model (physics)</span>

In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory. Lattice models are also ideal for study by the methods of computational physics, as the discretization of any continuum model automatically turns it into a lattice model. The exact solution to many of these models includes the presence of solitons. Techniques for solving these include the inverse scattering transform and the method of Lax pairs, the Yang–Baxter equation and quantum groups. The solution of these models has given insights into the nature of phase transitions, magnetization and scaling behaviour, as well as insights into the nature of quantum field theory. Physical lattice models frequently occur as an approximation to a continuum theory, either to give an ultraviolet cutoff to the theory to prevent divergences or to perform numerical computations. An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics. However, digital physics considers nature fundamentally discrete at the Planck scale, which imposes upper limit to the density of information, aka Holographic principle. More generally, lattice gauge theory and lattice field theory are areas of study. Lattice models are also used to simulate the structure and dynamics of polymers.

In quantum mechanics, the spin–statistics theorem relates the intrinsic spin of a particle to the particle statistics it obeys. In units of the reduced Planck constant ħ, all particles that move in 3 dimensions have either integer spin or half-integer spin.

In quantum field theory, Wilson loops are gauge invariant operators arising from the parallel transport of gauge variables around closed loops. They encode all gauge information of the theory, allowing for the construction of loop representations which fully describe gauge theories in terms of these loops. In pure gauge theory they play the role of order operators for confinement, where they satisfy what is known as the area law. Originally formulated by Kenneth G. Wilson in 1974, they were used to construct links and plaquettes which are the fundamental parameters in lattice gauge theory. Wilson loops fall into the broader class of loop operators, with some other notable examples being 't Hooft loops, which are magnetic duals to Wilson loops, and Polyakov loops, which are the thermal version of Wilson loops.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in particle physics within the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory. In condensed matter physics such bosons are quasiparticles and are known as Anderson–Bogoliubov modes.

In physics, the cluster decomposition property states that experiments carried out far from each other cannot influence each other. Usually applied to quantum field theory, it requires that vacuum expectation values of operators localized in bounded regions factorize whenever these regions becomes sufficiently distant from each other. First formulated by Eyvind Wichmann and James H. Crichton in 1963 in the context of the S-matrix, it was conjectured by Steven Weinberg that in the low energy limit the cluster decomposition property, together with Lorentz invariance and quantum mechanics, inevitably lead to quantum field theory. String theory satisfies all three of the conditions and so provides a counter-example against this being true at all energy scales.

The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a non-perturbative vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the complete theory which includes quarks. The presence of these condensates characterizes the confined phase of quark matter.

The Yang–Mills existence and mass gap problem is an unsolved problem in mathematical physics and mathematics, and one of the seven Millennium Prize Problems defined by the Clay Mathematics Institute, which has offered a prize of US$1,000,000 for its solution.

In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".

In quantum field theory, the 't Hooft loop is a magnetic analogue of the Wilson loop for which spatial loops give rise to thin loops of magnetic flux associated with magnetic vortices. They play the role of a disorder parameter for the Higgs phase in pure gauge theory. Consistency conditions between electric and magnetic charges limit the possible 't Hooft loops that can be used, similarly to the way that the Dirac quantization condition limits the set of allowed magnetic monopoles. They were first introduced by Gerard 't Hooft in 1978 in the context of possible phases that gauge theories admit.

<span class="mw-page-title-main">Light front holography</span> Technique used to determine mass of hadrons

In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; however, it is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

The Peierls substitution method, named after the original work by Rudolf Peierls is a widely employed approximation for describing tightly-bound electrons in the presence of a slowly varying magnetic vector potential.

In statistical mechanics, Lee–Yang theory, sometimes also known as Yang–Lee theory, is a scientific theory which seeks to describe phase transitions in large physical systems in the thermodynamic limit based on the properties of small, finite-size systems. The theory revolves around the complex zeros of partition functions of finite-size systems and how these may reveal the existence of phase transitions in the thermodynamic limit.

The Aubry–André model is a toy model of a one-dimensional crystal with periodically varying onsite energies. The model is employed to study both quasicrystals and the Anderson localization metal-insulator transition in disordered systems. It was first developed by Serge Aubry and Gilles André in 1980.

In lattice field theory, the Wilson action is a discrete formulation of the Yang–Mills action, forming the foundation of lattice gauge theory. Rather than using Lie algebra valued gauge fields as the fundamental parameters of the theory, group valued link fields are used instead, which correspond to the smallest Wilson lines on the lattice. In modern simulations of pure gauge theory, the action is usually modified by introducing higher order operators through Symanzik improvement, significantly reducing discretization errors. The action was introduced by Kenneth Wilson in his seminal 1974 paper, launching the study of lattice field theory.

References

  1. Polyakov, A.M. (1978). "Compact gauge fields and the infrared catastrophe". Physics Letters B. 59 (1): 82–84. doi:10.1016/0370-2693(75)90162-8.
  2. Wipf, A. [in German] (2021). "16". Statistical Approach to Quantum Field Theory (2 ed.). Springer. pp. 456–459. ISBN   978-3642331046.
  3. Gattringer, C.; Lang, C.B. (2009). "3". Quantum Chromodynamics on the Lattice: An Introductory Presentation. Lecture Notes in Physics 788. Springer. pp. 57–58. doi:10.1007/978-3-642-01850-3. ISBN   978-3642018497.
  4. Kovacs, T.G. (2021). "Localization at the quenched SU(3) phase transition". PoS. LATTICE2021: 238. arXiv: 2112.05454 . doi: 10.22323/1.396.0238 . S2CID   245117767.
  5. Bellwied, R.; Ratti, C. (2021). "2". The Deconfinement Transition of QCD. Springer. pp. 25–32. ISBN   978-3030672348.
  6. Greensite, J. (2020). "4". An Introduction to the Confinement Problem (2 ed.). Springer. pp. 42–43. ISBN   978-3030515621.
  7. Kogut, J.; Stephanov, M. (2003). "7". The Phases of Quantum Chromodynamics. Cambridge: Cambridge University Press. p. 178. ISBN   978-0521804509.
  8. Holland, K.; et al. (2003). "Exceptional confinement in G(2) gauge theory". Nucl. Phys. B. 668 (1–2): 207–236. arXiv: hep-lat/0302023 . Bibcode:2003NuPhB.668..207H. doi:10.1016/S0550-3213(03)00571-6. S2CID   119554796.
  9. Friman, B.; et al. (2011). "4". The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments. Springer. p. 239. ISBN   978-3642132926.
  10. Ratti, C.; Thaler, M.A.; Weise, W. [in German] (2006). "Phases of QCD: Lattice thermodynamics and a field theoretical model". Phys. Rev. D. 73 (1): 014019. arXiv: hep-ph/0506234 . Bibcode:2006PhRvD..73a4019R. doi:10.1103/PhysRevD.73.014019. S2CID   15677961.
  11. Roessner, S.; Ratti, C.; Weise, W. [in German] (2007). "Polyakov loop, diquarks, and the two-flavor phase diagram". Phys. Rev. D. 75 (3): 034007. arXiv: hep-ph/0609281 . Bibcode:2007PhRvD..75c4007R. doi:10.1103/PhysRevD.75.034007. S2CID   14960863.
  12. McLarren, L.D.; Svetitsky, B. (1981). "Quark liberation at high temperature: A Monte Carlo study of SU(2) gauge theory". Phys. Rev. D. 24 (2): 450–460. Bibcode:1981PhRvD..24..450M. doi:10.1103/PhysRevD.24.450.
  13. Makeenko, Y. (2002). "9". Methods of Contemporary Gauge Theory. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press. pp. 168–169. doi:10.1017/CBO9780511535147. ISBN   978-0521809115.
  14. Borgs, C.; Seiler, E. (1983). "Lattice Yang-Mills theory at nonzero temperature and the confinement problem". Communications in Mathematical Physics. 91 (3): 329–380. Bibcode:1983CMaPh..91..329B. doi:10.1007/BF01208780. S2CID   121126988.