Polychlorotrifluoroethylene

Last updated
Polychlorotrifluoroethylene
Polychlorotrifluoroethylene.svg
Names
Other names
Poly(1-chloro-1,2,2-trifluoroethylene)
Poly(ethylene trifluoride chloride)
Polymonochlorotrifluoroethylene
Poly(trifluoroethylene chloride)
Poly(chlorotrifluoroethylene)
Poly(trifluorochloroethene)
Poly(chlorotrifluoroethene)
Poly(trifluorovinyl chloride)
Poly(vinyl trifluorochloride)
Kel-F 300; Kel-F 81
Identifiers
AbbreviationsPCTFE, PTFCE [1]
ChemSpider
  • None
ECHA InfoCard 100.120.473 OOjs UI icon edit-ltr-progressive.svg
MeSH Polychlorotrifluoroethene
Properties
(C2ClF3)n°°
Molar mass Variable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Polychlorotrifluoroethylene (PCTFE or PTFCE) is a thermoplastic chlorofluoropolymer with the molecular formula (CF2CClF)n, where n is the number of monomer units in the polymer molecule. It is similar to polytetrafluoroethene (PTFE), except that it is a homopolymer of the monomer chlorotrifluoroethylene (CTFE) instead of tetrafluoroethene. It has the lowest water vapor transmission rate of any plastic. [2]

Contents

History

It was discovered in 1934 [3] [4] by Fritz Schloffer and Otto Scherer who worked at IG Farben Company, Germany. [5]

Trade names

After World War II, PCTFE was commercialized under the trade name of Kel-F 81 by M. W. Kellogg Company in early 1950s. [6] The name "Kel-F" was derived from "Kellogg" and "fluoropolymer", which also represents other fluoropolymers like the copolymer poly(chlorotrifluoroethylene-co-vinylidene fluoride) (Kel-F 800). [7] These were acquired by 3M Company in 1957. [6] But 3M discontinued manufacturing of Kel-F by 1996.

PCTFE resin is now manufactured in different trade names such as Neoflon PCTFE from Daikin, Voltalef from Arkema or Aclon from Allied Signal. PCTFE films are sold under the tradename Aclar by Allied Signal. [8] Tradenames of PCTFE in other manufacturing companies include Hostaflon C2 from Hoechst, Fluon from ICI, Aclar from Honeywell, Plaskon from Allied Chemical Corporation, Halon from Ausimont USA, [9] [10] and Ftoroplast-3 in USSR and Russian Federation. [11]

Synthesis

PCTFE is an addition homopolymer. It is prepared by the free-radical polymerization of chlorotrifluoroethylene (CTFE) [12] and can be carried out by solution, bulk, suspension and emulsion polymerization. [13]

Properties

PCTFE has high tensile strength and good thermal characteristics. It is nonflammable [14] and the heat resistance is up to 175 °C. [15] It has a low coefficient of thermal expansion. The glass transition temperature (Tg) is around 45 °C. [1]

PCTFE has one of the highest limiting oxygen index (LOI). [16] It has good chemical resistance. It also exhibits properties like zero moisture absorption and non wetting. [15] [17]

It does not absorb visible light. When subjected to high-energy radiation, it undergoes degradation like PTFE. [18] It can be used as a transparent film. [14]

The presence of a chlorine atom, having greater atomic radius than that of fluorine, hinders the close packing possible in PTFE. This results in having a relatively lower melting point among fluoropolymers, [19] around 210–215 °C. [2]

PCTFE is resistant to the attack by most chemicals and oxidizing agents, a property exhibited due to the presence of high fluorine content. However, it swells slightly in halocarbon compounds, ethers, esters and aromatic compounds. [2] PCTFE is resistant to oxidation because it does not have any hydrogen atoms. [20]

PCTFE exhibits a permanent dipole moment due to the asymmetry of its repeating unit. This dipole moment is perpendicular to the carbon-chain axis. [21]

Differences from PTFE

PCTFE is a homopolymer of chlorotrifluoroethylene (CTFE), whereas PTFE is a homopolymer of tetrafluoroethylene. The monomers of the former differs from that of latter structurally by having a chlorine atom replacing one of the fluorine atoms. Hence each repeating unit of PCTFE have a chlorine atom in place of a fluorine atom. This accounts for PCTFE to have less flexibility of chain and hence higher glass transition temperature. PTFE has a higher melting point and is more crystalline than PCTFE, but the latter is stronger and stiffer. Though PCTFE has excellent chemical resistance, it is still less than that of PTFE. [22] PCTFE has lower viscosity, higher tensile strength and creep resistance than PTFE. [1]

PCTFE is injection-moldable and extrudable, whereas PTFE is not. [1]

Applications

PCTFE finds majority of its application due to two main properties: water repulsion and chemical stability. PCTFE films are used as a protective layer against moisture. These include:

Due to its chemical stability, it acts as a protective barrier against chemicals. It is used as a coating and prefabricated liner for chemical applications. PCTFE is also used for laminating other polymers like PVC, polypropylene, PETG, APET etc. It is also used in transparent eyeglasses, tubes, valves, chemical tank liners, O-rings, seals and gaskets. [15]

PCTFE is used to protect sensitive electronic components because of its excellent electrical resistance and water repulsion. Other uses include flexible printed circuits and insulation of wires and cables. [24] [22]

Low-molecular-weight PCTFE waxes, oils and greases find their application as inert sealants and lubricants. They are also used as gyroscope flotation fluids and plasticizers for thermoplastics. [2]

The cryogenic and liquid gas sector uses mainly PCTFE seals for their sealing solution as this material has low gas absorption and resist to temperature below 200 °C.

Related Research Articles

Nylon Family of synthetic polymers originally developed as textile fibres

Nylon is a generic designation for a family of synthetic polymers composed of polyamides. Nylon is a silk-like thermoplastic, generally made from petroleum, that can be melt-processed into fibers, films, or shapes. Nylon polymers can be mixed with a wide variety of additives to achieve many different property variations. Nylon polymers have found significant commercial applications in fabric and fibers, in shapes, and in films.

Polymer Substance composed of macromolecules with repeating structural units

A polymer is a substance or material consisting of very large molecules, or macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

Polytetrafluoroethylene Synthetic polymer

Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene that has numerous applications. The commonly known brand name of PTFE-based compositions is Teflon by Chemours, a spin-off from DuPont, which originally discovered the compound in 1938.

Thermoplastic Plastic that becomes soft when heated and hard when cooled

A thermoplastic, or thermosoft plastic, is a plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

Thermosetting polymer Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure, or mixing with a catalyst. Heat is not necessarily applied externally, but is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

Polyvinylidene fluoride Non-reactive thermoplastic fluoropolymer

Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride.

A fluoropolymer is a fluorocarbon-based polymer with multiple carbon–fluorine bonds. It is characterized by a high resistance to solvents, acids, and bases. The best known fluoropolymer is polytetrafluoroethylene under the brand name "Teflon," trademarked by the DuPont Company.

Fluorinated ethylene propylene

Fluorinated ethylene propylene (FEP) is a copolymer of hexafluoropropylene and tetrafluoroethylene. It differs from the polytetrafluoroethylene (PTFE) resins in that it is melt-processable using conventional injection molding and screw extrusion techniques. Fluorinated ethylene propylene was invented by DuPont and is sold under the brandname Teflon FEP. Other brandnames are Neoflon FEP from Daikin or Dyneon FEP from Dyneon/3M.

ECTFE Chemical compound

ECTFE was designed to provide chemical resistance in heavy duty corrosion applications. It is a partially fluorinated polymer, semi-crystalline and can be processed in the melt. Chemically it is a copolymer of ethylene and chlorotrifluoroethylene. It is marketed under the brand name Halar ECTFE by Solvay Specialty Polymers, a subsidiary of Solvay.

Chlorotrifluoroethylene (CTFE) is a chlorofluorocarbon with chemical formula CFCl=CF2. It is commonly used as a refrigerant in cryogenic applications. CTFE has a carbon-carbon double bond and so can be polymerized to form polychlorotrifluoroethylene or copolymerized to produce the plastic ECTFE. PCTFE has the trade name Neoflon PCTFE from Daikin Industries in Japan, and used to be produced under the trade name Kel-F from 3M Corporation in Minnesota.

In materials science, a polymer blend, or polymer mixture, is a member of a class of materials analogous to metal alloys, in which at least two polymers are blended together to create a new material with different physical properties.

Perfluoroethers are a class of organofluorine compound containing one or more ether functional group. In general these compounds are structurally analogous to the related hydrocarbon ethers, except for the distinctive properties of fluorocarbons.

Fluorine Chemical element, symbol F and atomic number 9

Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative element, it is extremely reactive, as it reacts with all other elements except for argon, neon, and helium.

PTFE fiber is a chemically resistant material. It is used in woven form in certain pump packings as well as in nonwoven form in hot gas bag filters for industries with corrosive exhausts.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

Fluorochemical industry Industry dealing with chemicals from fluorine

The global market for chemicals from fluorine was about US$16 billion per year as of 2006. The industry was predicted to reach 2.6 million metric tons per year by 2015. The largest market is the United States. Western Europe is the second largest. Asia Pacific is the fastest growing region of production. China in particular has experienced significant growth as a fluorochemical market and is becoming a producer of them as well. Fluorite mining was estimated in 2003 to be a $550 million industry, extracting 4.5 million tons per year.

Perfluoroalkoxy alkane

Perfluoroalkoxy alkanes (PFA) are fluoropolymers. They are copolymers of tetrafluoroethylene (C2F4) and perfluoroethers (C2F3ORf, where Rf is a perfluorinated group such as trifluoromethyl (CF3)). The properties of these polymers are similar to those of polytetrafluoroethylene (PTFE). Compared to PTFE, PFA has better anti-stick properties and higher chemical resistance, at the expense of lesser scratch resistance. Unlike with PTFE, the alkoxy substituents allow the polymer to be melt-processed. On a molecular level, PFA polymers have a smaller chain length and higher chain entanglement than other fluoropolymers. They also contain an oxygen atom at the branches. This results in materials that are more translucent and have improved flow and creep resistance, with thermal stability close to or exceeding PTFE. Thus, PFA is preferred when extended service is required in hostile environments involving chemical, thermal, and mechanical stress. PFA offers high melt strength, stability at high processing temperatures, excellent crack and stress resistance and a low coefficient of friction. Similarly enhanced processing properties are found in fluorinated ethylene propylene (FEP), the copolymer of tetrafluoroethylene and hexafluoropropylene. However FEP is ten times less capable of withstanding repeated bending without fracture than PFA.

High-performance plastics Plastics that meet higher requirements than engineering plastics

High-performance plastics are plastics that meet higher requirements than standard or engineering plastics. They are more expensive and used in smaller amounts.

Graft polymer Polymer with a backbone of one composite and random branches of another composite

In polymer chemistry, graft polymers are segmented copolymers with a linear backbone of one composite and randomly distributed branches of another composite. The picture labeled "graft polymer" shows how grafted chains of species B are covalently bonded to polymer species A. Although the side chains are structurally distinct from the main chain, the individual grafted chains may be homopolymers or copolymers. Graft polymers have been synthesized for many decades and are especially used as impact resistant materials, thermoplastic elastomers, compatibilizers, or emulsifiers for the preparation of stable blends or alloys. One of the better-known examples of a graft polymer is high impact polystyrene, which consists of a polystyrene backbone with polybutadiene grafted chains.

Polytetrafluoroethylene (PTFE), better known by its trade name Teflon, has many desirable properties which make it an attractive material for numerous industries. It has good chemical resistance, a low dielectric constant, low dielectric loss, and a low coefficient of friction, making it ideal for reactor linings, circuit boards, and kitchen utensils, to name a few applications. However, its nonstick properties make it challenging to bond to other materials or to itself.

References

  1. 1 2 3 4 Christopher C. Ibeh (2011). THERMOPLASTIC MATERIALS Properties, Manufacturing Methods, and Applications. CRC Press. p. 491. ISBN   978-1-4200-9383-4.
  2. 1 2 3 4 C. H. Kurita (20 Jan 1988). "Appendix A" (PDF). D-ZERO COLD VALUE. pp. 58–61. Archived from the original (PDF) on 21 October 2013. Retrieved June 14, 2012.
  3. Tsuyoshi Nakajima; Henri Groult (4 August 2005). Fluorinated Materials For Energy Conversion. Elsevier. p. 472. ISBN   978-0-08-044472-7 . Retrieved 14 July 2012.
  4. B. Améduri; Bernard Boutevin (7 July 2004). Well-architectured Fluoropolymers: Synthesis, Properties And Applications. Elsevier. p. 5. ISBN   978-0-08-044388-1 . Retrieved 14 July 2012.
  5. Koch 2012, p. 11.
  6. 1 2 Takashi Okazoe. "Synthetic Studies on Perfluorinated Compounds by Direct Fluorination" (PDF). p. 17. Retrieved July 14, 2012.
  7. Suhithi M. Peiris; Gasper J. Piermarini (10 December 2008). Static Compression of Energetic Materials. Springer. pp. 158–. ISBN   978-3-540-68146-5 . Retrieved 14 July 2012.
  8. Sina Ebnesajjad (31 December 2000). Fluoroplastics, Volume 1: Non-Melt Processible Fluoroplastics. William Andrew. p. 74. ISBN   978-0-8155-1727-6 . Retrieved 8 July 2012.
  9. DIANE Publishing Company (1 July 1993). New Materials Society, Challenges and Opportunities: New Materials Science and Technology. DIANE Publishing. p. 8.42. ISBN   978-0-7881-0147-2 . Retrieved 8 July 2012.
  10. Ernst-Christian Koch (17 April 2012). Metal-Fluorocarbon Based Energetic Materials. John Wiley & Sons. p. 23. ISBN   978-3-527-32920-5 . Retrieved 8 July 2012.
  11. ГОСТ 13744-83 State Standard of USSR
  12. Sina Ebnesajjad (31 December 2002). Melt Processible Fluoropolymers: The Definitive User's Guide and Databook. William Andrew. p. 636. ISBN   978-1-884207-96-9 . Retrieved 8 July 2012.
  13. Ebnesajjad 2000, p. 61.
  14. 1 2 Ruth Winter (2 August 2007). A Consumer's Dictionary of Household, Yard and Office Chemicals: Complete Information About Harmful and Desirable Chemicals Found in Everyday Home Products, Yard Poisons, and Office Polluters. iUniverse. p. 255. ISBN   978-0-595-44948-4 . Retrieved 14 July 2012.
  15. 1 2 3 François Cardarelli (2008). Materials Handbook: A Concise Desktop Reference. Springer. pp. 708–709. ISBN   9781846286681. ISBN   1846286689.
  16. Ebnesajjad, Sina. Fluoroplastics, Volume 2: Melt Processible Fluoropolymers – The Definitive User Guide and Data Book. p. 560.
  17. "RIDOUT PLASTICS" . Retrieved June 5, 2012.
  18. J. A. Brydson (8 November 1999). Plastics Materials. Butterworth-Heinemann. pp. 423–. ISBN   978-0-7506-4132-6 . Retrieved 30 June 2012.
  19. Drobny 2006, p. 8, 22.
  20. "Archived copy". Archived from the original on 2012-01-07. Retrieved 2012-06-13.{{cite web}}: CS1 maint: archived copy as title (link)
  21. "Dielectric Properties of Semicrystalline Polychlorotrifluoroethylene" (PDF). Journal of Research of the National Bureau of Standards Section A. 66A (4): 1. 1962. Retrieved June 26, 2012.
  22. 1 2 Dominick V. Rosato; Donald V. Rosato; Matthew V. Rosato (2004). Plastic Product Material and Process Selection Handbook. Elsevier. p. 75. ISBN   185617431X. ISBN   9781856174312.
  23. "Technical plastics for cryogenics". Société des Plastiques Nobles. Retrieved 2020-02-14.
  24. Drobny 2006, p. 37-39.