Polychromatic symmetry is a colour symmetry which interchanges three or more colours in a symmetrical pattern. It is a natural extension of dichromatic symmetry. The coloured symmetry groups are derived by adding to the position coordinates (x and y in two dimensions, x, y and z in three dimensions) an extra coordinate, k, which takes three or more possible values (colours). [1]
An example of an application of polychromatic symmetry is crystals of substances containing molecules or ions in triplet states, that is with an electronic spin of magnitude 1, should sometimes have structures in which the spins of these groups have projections of + 1, 0 and -1 onto local magnetic fields. If these three cases are present with equal frequency in an orderly array, then the magnetic space group of such a crystal should be three-coloured. [2] [3]
The group p3 has three different rotation centres of order three (120°), but no reflections or glide reflections.
Uncoloured pattern p3 | 3-colour pattern p3[3]1 | 3-colour pattern p3[3]2 |
---|---|---|
There are two distinct ways of colouring the p3 pattern with three colours: p3[3]1 and p3[3]2 where the figure in square brackets indicates the number of colours, and the subscript distinguishes between multiple cases of coloured patterns. [5]
Taking a single motif in the pattern p3[3]1 it has a symmetry operation 3', consisting of a rotation by 120° and a cyclical permutation of the three colours white, green and red as shown in the animation.
This pattern p3[3]1 has the same colour symmetry as M. C. Escher's Hexagonal tessellation with animals: study of regular division of the plane with reptiles (1939). Escher reused the design in his 1943 lithograph Reptiles and it was also used as the cover art of Mott the Hoople’s debut album.
4 colours p3[4] [6] : 287 4.03.01 | 6 colours p3[6] | 7 colours p3[7] | 9 colours p3[9]1 | 12 colours p3[12]1 |
---|---|---|---|---|
Initial research by Wittke and Garrido (1959) [7] and by Niggli and Wondratschek (1960) [8] identified the relation between the colour groups of an object and the subgroups of the object's geometric symmetry group. In 1961 van der Waerden and Burckhardt [9] built on the earlier work by showing that colour groups can be defined as follows: in a colour group of a pattern (or object) each of its geometric symmetry operations s is associated with a permutation σ of the k colours in such a way that all the pairs (s,σ) form a group. Senechal showed that the permutations are determined by the subgroups of the geometric symmetry group G of the uncoloured pattern. [10] When each symmetry operation in G is associated with a unique colour permutation the pattern is said to be perfectly coloured. [11] [12]
The Waerden-Burckhardt theory defines a k-colour group G(H) as being determined by a subgroup H of index k in the symmetry group G. [13] If the subgroup H is a normal subgroup then the quotient group G/H permutes all the colours. [14]
Number of colours (k) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Underlying group | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
p111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
p1a1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
p1m1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
pm11 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
p112 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
pma2 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
pmm2 | 5 | 1 | 7 | 1 | 5 | 1 | 7 | 1 | 5 | 1 | 7 |
Total strip groups | 17 | 7 | 19 | 7 | 17 | 7 | 19 | 7 | 17 | 7 | 19 |
Number of colours (k) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Underlying group | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
p1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 |
pg | 2 | 2 | 4 | 2 | 5 | 2 | 7 | 3 | 6 | 2 | 11 |
pm | 5 | 2 | 10 | 2 | 11 | 2 | 16 | 3 | 12 | 2 | 23 |
cm | 3 | 2 | 7 | 2 | 7 | 2 | 13 | 3 | 8 | 2 | 17 |
p2 | 2 | 1 | 3 | 1 | 2 | 1 | 4 | 2 | 2 | 1 | 3 |
pgg | 2 | 1 | 4 | 1 | 4 | 1 | 7 | 2 | 5 | 1 | 9 |
pmg | 5 | 2 | 11 | 2 | 11 | 2 | 19 | 3 | 12 | 2 | 26 |
pmm | 5 | 1 | 13 | 1 | 9 | 1 | 21 | 2 | 10 | 1 | 25 |
cmm | 5 | 1 | 11 | 1 | 8 | 1 | 21 | 2 | 9 | 1 | 22 |
p3 | - | 2 | 1 | - | 1 | 1 | - | 3 | - | - | 4 |
p31m | 1 | 2 | 1 | - | 5 | - | 1 | 3 | - | - | 7 |
p3m1 | 1 | 2 | 1 | - | 4 | - | 1 | 3 | - | - | 7 |
p4 | 2 | - | 5 | 1 | 2 | - | 9 | 1 | 4 | - | 9 |
p4g | 3 | - | 7 | - | 2 | - | 13 | 1 | 3 | - | 10 |
p4m | 5 | - | 13 | - | 2 | - | 28 | 1 | 3 | - | 16 |
p6 | 1 | 2 | 1 | - | 5 | 1 | 1 | 3 | - | - | 8 |
p6m | 3 | 2 | 2 | - | 11 | - | 3 | 3 | - | - | 20 |
Total periodic groups | 46 | 23 | 96 | 14 | 90 | 15 | 166 | 40 | 75 | 13 | 219 |
Both of the 3-colour p3 patterns, the unique 4-, 6-, 7-colour p3 patterns, one of the three 9-colour p3 patterns, and one of the four 12-colour p3 patterns are illustrated in the Example section above.
A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.
In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group are the rigid transformations of the pattern that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups.
Fiber diffraction is a subarea of scattering, an area in which molecular structure is determined from scattering data. In fiber diffraction the scattering pattern does not change, as the sample is rotated about a unique axis. Such uniaxial symmetry is frequent with filaments or fibers consisting of biological or man-made macromolecules. In crystallography fiber symmetry is an aggravation regarding the determination of crystal structure, because reflections are smeared and may overlap in the fiber diffraction pattern. Materials science considers fiber symmetry a simplification, because almost the complete obtainable structure information is in a single two-dimensional (2D) diffraction pattern exposed on photographic film or on a 2D detector. 2 instead of 3 co-ordinate directions suffice to describe fiber diffraction.
Nikolay Vasilyevich Belov was a Soviet and Russian crystallographer, geochemist, academician (1953), and Hero of Socialist Labour (1969).
Bilbao Crystallographic Server is an open access website offering online crystallographic database and programs aimed at analyzing, calculating and visualizing problems of structural and mathematical crystallography, solid state physics and structural chemistry. Initiated in 1997 by the Materials Laboratory of the Department of Condensed Matter Physics at the University of the Basque Country, Bilbao, Spain, the Bilbao Crystallographic Server is developed and maintained by academics.
A domain wall is a term used in physics which can have similar meanings in magnetism, optics, or string theory. These phenomena can all be generically described as topological solitons which occur whenever a discrete symmetry is spontaneously broken.
In solid state physics, the magnetic space groups, or Shubnikov groups, are the symmetry groups which classify the symmetries of a crystal both in space, and in a two-valued property such as electron spin. To represent such a property, each lattice point is colored black or white, and in addition to the usual three-dimensional symmetry operations, there is a so-called "antisymmetry" operation which turns all black lattice points white and all white lattice points black. Thus, the magnetic space groups serve as an extension to the crystallographic space groups which describe spatial symmetry alone.
Alexei Vasilievich Shubnikov was a Soviet crystallographer and mathematician. Shubnikov was the founding director of the Institute of Crystallography of the Academy of Sciences of the Soviet Union in Moscow. Shubnikov pioneered Russian crystallography and its application.
The A. V. Shubnikov Institute of Crystallography is a scientific institute of the Department of Physical Sciences of the Russian Academy of Sciences (RAS) located in Moscow, Russia. The institute was created by the order of the Presidium of the Academy of Sciences of the USSR on 16 November 1943. The first director of the Institute was a corresponding member of the Academy of Sciences of the USSR Alexei Vasilievich Shubnikov. In 1969, the institute was awarded the Order of the Red Banner of Labour.
Dichromatic symmetry, also referred to as antisymmetry, black-and-white symmetry, magnetic symmetry, counterchange symmetry or dichroic symmetry, is a symmetry operation which reverses an object to its opposite. A more precise definition is "operations of antisymmetry transform objects possessing two possible values of a given property from one value to the other." Dichromatic symmetry refers specifically to two-coloured symmetry; this can be extended to three or more colours in which case it is termed polychromatic symmetry. A general term for dichromatic and polychromatic symmetry is simply colour symmetry. Dichromatic symmetry is used to describe magnetic crystals and in other areas of physics, such as time reversal, which require two-valued symmetry operations.
Alexander Mihailovich Zamorzaev was a Soviet mathematician and crystallographer. In 1953 Zamorzaev was the first to derive the complete list of magnetic space groups. In 1957 Zamorzaev founded the field of generalised antisymmetry by introducing the concept of more than one kind of two-valued antisymmetry operation.
Vladimir Alexandrovich Koptsik was a Soviet crystallographer and physicist. In 1966 Koptsik was the first to publish the complete atlas of all 1651 antisymmetry space groups. In 1972 he published Symmetry in science and art with extensive coverage of dichromatic and polychromatic symmetry.
Tilings and patterns is a book by mathematicians Branko Grünbaum and Geoffrey Colin Shephard published in 1987 by W.H. Freeman. The book was 10 years in development, and upon publication it was widely reviewed and highly acclaimed.
Geometric symmetry is a book by mathematician E.H. Lockwood and design engineer R.H. Macmillan published by Cambridge University Press in 1978. The subject matter of the book is symmetry and geometry.
Symmetry aspects of M. C. Escher's periodic drawings is a book by crystallographer Caroline H. MacGillavry published for the International Union of Crystallography (IUCr) by Oosthoek in 1965. The book analyzes the symmetry of M. C. Escher's colored periodic drawings using the international crystallographic notation.
M. C. Escher: Visions of Symmetry is a book by mathematician Doris Schattschneider published by W. H. Freeman in 1990. The book analyzes the symmetry of M. C. Escher's colored periodic drawings and explains the methods he used to construct his artworks. Escher made extensive use of two-color and multi-color symmetry in his periodic drawings. The book contains more than 350 illustrations, half of which were never previously published.
Kristallografija, also transliterated as Kristallografiya or Kristallografiia, is a bimonthly, peer-reviewed, Russian crystallography journal currently published by MAIC "Science/Interperiodica". An English translation Crystallography Reports is published by Pleiades Publishing, Inc.
Colored Symmetry is a book by A.V. Shubnikov and N.V. Belov and published by Pergamon Press in 1964. The book contains translations of materials originally written in Russian and published between 1951 and 1958. The book was notable because it gave English-language speakers access to new work in the fields of dichromatic and polychromatic symmetry.
Symmetry in Science and Art is a book by A.V. Shubnikov and V.A. Koptsik published by Plenum Press in 1974. The book is a translation of Simmetrija v nauke i iskusstve published by Nauka in 1972. The book was notable because it gave English-language speakers access to Russian work in the fields of dichromatic and polychromatic symmetry.
Color and Symmetry is a book by Arthur L. Loeb published by Wiley Interscience in 1971. The author adopts an unconventional algorithmic approach to generating the line and plane groups based on the concept of "rotocenter". He then introduces the concept of two or more colors to derive all of the plane dichromatic symmetry groups and some of the polychromatic symmetry groups.