Polypedilum vanderplanki

Last updated

Polypedilum vanderplanki
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Family: Chironomidae
Genus: Polypedilum
Species:
P. vanderplanki
Binomial name
Polypedilum vanderplanki
Hinton, 1951

Polypedilum vanderplanki or the sleeping chironomid, is a dipteran in the family Chironomidae (non-biting midges). It occurs in the semi-arid regions of the African continent (e.g. northern Nigeria and Uganda). Its larvae are found in small tubular nests in the mud at the bottom of temporary pools that frequently dry out during the lifetime of P. vanderplanki larvae. Under these conditions, the larvae's body desiccates to as low as 3% water content by weight. In the dehydrated state the larvae become impervious to many extreme environmental conditions, and can survive temperatures from 3 K to up to 375 K, very high (7000 gray) levels of gamma-rays, and exposure to vacuum. [1] [2] It is one of few metazoans that can withstand near complete desiccation (anhydrobiosis) in order to survive adverse environmental conditions. Slow desiccation (0.22 ml per day) enabled larvae to synthesize 38 μg trehalose/individual, and all of them recovered after rehydration, whereas larvae that were dehydrated 3 times faster accumulated only 6.8 μg trehalose/individual and none of them revived after rehydration. [3] [4] Late Embryo Abundant (LEA), anti-oxidant, and heat-shock proteins may also be involved in survival. [5] [6] [7] This species is considered the most cold-tolerant insect species, able to survive liquid helium (−270 °C) exposure for up to 5 min. with a 100% survival rate when desiccated to 8% water content. [8]

Related Research Articles

<span class="mw-page-title-main">Rotifer</span> Phylum of pseudocoelomate invertebrates

The rotifers, sometimes called wheel animals or wheel animalcules, make up a phylum of microscopic and near-microscopic pseudocoelomate animals.

<span class="mw-page-title-main">Dehydration</span> Deficit of total body water

In physiology, dehydration is a lack of total body water that disrupts metabolic processes. It occurs when free water loss exceeds free water intake. This is usually due to excessive sweating, disease, or a lack of access to water. Mild dehydration can also be caused by immersion diuresis, which may increase risk of decompression sickness in divers.

<span class="mw-page-title-main">Desiccation</span> State of extreme dryness or process of thorough drying

Desiccation is the state of extreme dryness, or the process of extreme drying. A desiccant is a hygroscopic substance that induces or sustains such a state in its local vicinity in a moderately sealed container. The word desiccation comes from Latin de- 'thoroughly' and siccare 'to dry'.

<span class="mw-page-title-main">Psychrophile</span> Organism capable of growing and reproducing in the cold

Psychrophiles or cryophiles are extremophilic organisms that are capable of growth and reproduction in low temperatures, ranging from −20 °C (−4 °F) to 20 °C (68 °F). They are found in places that are permanently cold, such as the polar regions and the deep sea. They can be contrasted with thermophiles, which are organisms that thrive at unusually high temperatures, and mesophiles at intermediate temperatures. Psychrophile is Greek for 'cold-loving', from Ancient Greek ψυχρός (psukhrós) 'cold, frozen'.

<span class="mw-page-title-main">Cucujidae</span> Family of beetles

The Cucujidae, or flat bark beetles, are a family of distinctively flat beetles found worldwide under the bark of dead trees. The family has received considerable taxonomic attention in recent years and now consists of 70 species distributed in five genera. It was indicated Cucujus species are scavengers, only feeding on pupae and larvae of other insects and on other subcortical beetles such as their own. Since the Cucujidae prey on larvae of potentially tree damaging beetles that spread fungal diseases, they are considered to be beneficial to the health of living trees.

<span class="mw-page-title-main">Trehalose</span> Chemical compound

Trehalose is a sugar consisting of two molecules of glucose. It is also known as mycose or tremalose. Some bacteria, fungi, plants and invertebrate animals synthesize it as a source of energy, and to survive freezing and lack of water.

<i>Pleopeltis polypodioides</i> Species of fern

Pleopeltis polypodioides, also known as the resurrection fern, is a species of creeping, coarse-textured fern native to the Americas and Africa.

<span class="mw-page-title-main">Cryptobiosis</span> Metabolic state of life

Cryptobiosis or anabiosis is a metabolic state in extremophilic organisms in response to adverse environmental conditions such as desiccation, freezing, and oxygen deficiency. In the cryptobiotic state, all measurable metabolic processes stop, preventing reproduction, development, and repair. When environmental conditions return to being hospitable, the organism will return to its metabolic state of life as it was prior to cryptobiosis.

<span class="mw-page-title-main">Resurrection plant</span> Index of plants with the same common name

A resurrection plant is any poikilohydric plant that can survive extreme dehydration, even over months or years.

<span class="mw-page-title-main">Chironomidae</span> Family of flies

The Chironomidae comprise a family of nematoceran flies with a global distribution. They are closely related to the Ceratopogonidae, Simuliidae, and Thaumaleidae. Many species superficially resemble mosquitoes, but they lack the wing scales and elongated mouthparts of the Culicidae.

<i>Selaginella lepidophylla</i> Species of spore-bearing plant

Selaginella lepidophylla, also known as a resurrection plant, is a species of desert plant in the spikemoss family (Selaginellaceae). It is native to the Chihuahuan Desert of the United States and Mexico. S. lepidophylla is renowned for its ability to survive almost complete desiccation. Resurrection plants are vascular rooted plants capable of surviving extreme desiccation, then resuming normal metabolic activity upon rehydration. The plant's hydro-responsive movements are governed by stem moisture content, tissue properties and a graded distribution of lignified cells affecting concentric stem stiffness and spiraling. During dry weather in its native habitat, its stems curl into a tight ball, uncurling only when exposed to moisture.

<i>Belgica antarctica</i> Species of fly

Belgica antarctica, the Antarctic midge, is a species of flightless midge, endemic to the continent of Antarctica. At 2–6 mm (0.08–0.2 in) long, it is the largest purely terrestrial animal native to the continent. It also has the smallest known insect genome as of 2014, with only 99 million base pairs of nucleotides and about 13500 genes. It is the only insect that can survive year-round in Antarctica.

Osmoprotectants or compatible solutes are small organic molecules with neutral charge and low toxicity at high concentrations that act as osmolytes and help organisms survive extreme osmotic stress. Osmoprotectants can be placed in three chemical classes: betaines and associated molecules, sugars and polyols, and amino acids. These molecules accumulate in cells and balance the osmotic difference between the cell's surroundings and the cytosol. In plants, their accumulation can increase survival during stresses such as drought. In extreme cases, such as in bdelloid rotifers, tardigrades, brine shrimp, and nematodes, these molecules can allow cells to survive being completely dried out and let them enter a state of suspended animation called cryptobiosis.

<span class="mw-page-title-main">Tardigrade</span> Phylum of microscopic animals, also known as water bears

Tardigrades, known colloquially as water bears or moss piglets, are a phylum of eight-legged segmented micro-animals. They were first described by the German zoologist Johann August Ephraim Goeze in 1773, who called them Kleiner Wasserbär'little water bear'. In 1776, the Italian biologist Lazzaro Spallanzani named them Tardigrada, which means 'slow steppers'.

Desiccation tolerance refers to the ability of an organism to withstand or endure extreme dryness, or drought-like conditions. Plants and animals living in arid or periodically arid environments such as temporary streams or ponds may face the challenge of desiccation, therefore physiological or behavioral adaptations to withstand these periods are necessary to ensure survival. In particular, insects occupy a wide range of ecologically diverse niches and, so, exhibit a variety of strategies to avoid desiccation.

<i>Polypedilum</i> Genus of flies

Polypedilum is a genus of non-biting midges in the subfamily Chironominae of the bloodworm family Chironomidae. This is probably the most species-rich of all chironomid genera. Larvae of Polypedilum may also be among the most abundant invertebrates in eutrophic ponds, reaching densities of up to 1200 larvae per square meter.

<i>Myrothamnus flabellifolius</i> Species of plant of Southern Africa

Myrothamnus flabellifolius is a plant species in the family Myrothamnaceae native to central and southern Africa. It is also called the resurrection plant for the appearance of dead leaves reviving during rain.

<i>Upis ceramboides</i> Species of beetle

Upis ceramboides is a species of beetle, one of many wood-living insects that benefit from forest fires. It often occurs in quantities below the bark on the fire-damaged birches, but can sometimes be seen on other deciduous trees such as willow and aspen. The larvae thrive in the inner bark which is rich in mycelia, and in the sapwood. They develop into pupae during the summer months under the bark, and they develop over two or three years. The following spring they reproduce themselves.

Tardigrade specific proteins are types of intrinsically disordered proteins specific to tardigrades. These proteins help tardigrades survive desiccation, one of the adaptations which contribute to tardigrade's extremotolerant nature. Tardigrade specific proteins are strongly influenced by their environment, leading to adaptive malleability across a variety of extreme abiotic environments.

Panagrolaimus superbus is a species of terrestrial free-living nematode (roundworm). P. superbus, like other species within the Panagrolaimus genus, exhibits the ability to enter anhydrobiosis for extended periods of time.

References

  1. Okuda, T.; Watanabe, M.; Sychev, V.; Novikova, N.; Gusev, O.; Saigusa, M. (Jul 2006). "Polypedilum vanderplanki: an anhydrobiotic insect as a potential tool for space biology". 36th COSPAR Scientific Assembly in Beijing. 36: 2237. Bibcode:2006cosp...36.2237O.
  2. Hinton HE (1960). "A fly larva that tolerates dehydration and temperatures of -270°C to +102°C". Nature . 188 (4747): 336–337. Bibcode:1960Natur.188..336H. doi:10.1038/188336a0. S2CID   4260914.
  3. Kikawada, Takahiro; et al. (2005). "Factors Inducing Successful Anhydrobiosis in the African Chironomid Polypedilum vanderplanki: Significance of the Larval Tubular Nest". Integrative and Comparative Biology . 45 (5): 710–714. doi: 10.1093/icb/45.5.710 . PMID   21676821.
  4. Sakurai, M; Furuki, T; Akao, K; Tanaka, D; Nakahara, Y; Kikawada, T; Watanabe, M; Okuda, T (2008). "Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki". PNAS . 105 (13): 5093–5098. Bibcode:2008PNAS..105.5093S. doi: 10.1073/pnas.0706197105 . PMC   2278217 . PMID   18362351.
  5. "Sleeping Chironmid. Study of tolerance". Sleeping Chironomid Research Group, National Institute of Agrobiological Sciences, Japan. 2011.
  6. Gusev, Oleg; et al. (2010). Zhou, Zhongjun (ed.). "Anhydrobiosis-Associated Nuclear DNA Damage and Repair in the Sleeping Chironomid: Linkage with Radioresistance". PLoS ONE . 5 (11): e14008. Bibcode:2010PLoSO...514008G. doi: 10.1371/journal.pone.0014008 . PMC   2982815 . PMID   21103355.
  7. Gusev, O; Cornette, R; Kikawada, T; Okuda, T (2011). "Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid Polypedilum vanderplanki". Cell Stress and Chaperones . 16 (1): 81–90. doi:10.1007/s12192-010-0223-9. PMC   3024092 . PMID   20809134.
  8. Hall, Jason P.W. (1994). "Chapter 4: Most Tolerant of Cold". In Walker, Thomas J. (ed.). Book of Insect Records. University of Florida. OCLC   439076927.