Pu's inequality

Last updated
An animation of the Roman surface representing RP in R Steiner's Roman Surface.gif
An animation of the Roman surface representing RP in R

In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it.

Contents

Statement

A student of Charles Loewner, Pu proved in his 1950 thesis ( Pu 1952 ) that every Riemannian surface homeomorphic to the real projective plane satisfies the inequality

where is the systole of . The equality is attained precisely when the metric has constant Gaussian curvature.

In other words, if all noncontractible loops in have length at least , then and the equality holds if and only if is obtained from a Euclidean sphere of radius by identifying each point with its antipodal.

Pu's paper also stated for the first time Loewner's inequality, a similar result for Riemannian metrics on the torus.

Proof

Pu's original proof relies on the uniformization theorem and employs an averaging argument, as follows.

By uniformization, the Riemannian surface is conformally diffeomorphic to a round projective plane. This means that we may assume that the surface is obtained from the Euclidean unit sphere by identifying antipodal points, and the Riemannian length element at each point is

where is the Euclidean length element and the function , called the conformal factor, satisfies .

More precisely, the universal cover of is , a loop is noncontractible if and only if its lift goes from one point to its opposite, and the length of each curve is

Subject to the restriction that each of these lengths is at least , we want to find an that minimizes the

where is the upper half of the sphere.

A key observation is that if we average several different that satisfy the length restriction and have the same area , then we obtain a better conformal factor , that also satisfies the length restriction and has

and the inequality is strict unless the functions are equal.

A way to improve any non-constant is to obtain the different functions from using rotations of the sphere , defining . If we average over all possible rotations, then we get an that is constant over all the sphere. We can further reduce this constant to minimum value allowed by the length restriction. Then we obtain the obtain the unique metric that attains the minimum area .

Reformulation

Alternatively, every metric on the sphere invariant under the antipodal map admits a pair of opposite points at Riemannian distance satisfying

A more detailed explanation of this viewpoint may be found at the page Introduction to systolic geometry.

Filling area conjecture

An alternative formulation of Pu's inequality is the following. Of all possible fillings of the Riemannian circle of length by a -dimensional disk with the strongly isometric property, the round hemisphere has the least area.

To explain this formulation, we start with the observation that the equatorial circle of the unit -sphere is a Riemannian circle of length . More precisely, the Riemannian distance function of is induced from the ambient Riemannian distance on the sphere. Note that this property is not satisfied by the standard imbedding of the unit circle in the Euclidean plane. Indeed, the Euclidean distance between a pair of opposite points of the circle is only , whereas in the Riemannian circle it is .

We consider all fillings of by a -dimensional disk, such that the metric induced by the inclusion of the circle as the boundary of the disk is the Riemannian metric of a circle of length . The inclusion of the circle as the boundary is then called a strongly isometric imbedding of the circle.

Gromov conjectured that the round hemisphere gives the "best" way of filling the circle even when the filling surface is allowed to have positive genus ( Gromov 1983 ).

Isoperimetric inequality

Pu's inequality bears a curious resemblance to the classical isoperimetric inequality

for Jordan curves in the plane, where is the length of the curve while is the area of the region it bounds. Namely, in both cases a 2-dimensional quantity (area) is bounded by (the square of) a 1-dimensional quantity (length). However, the inequality goes in the opposite direction. Thus, Pu's inequality can be thought of as an "opposite" isoperimetric inequality.

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<i>n</i>-sphere Generalized sphere of dimension n (mathematics)

In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they exist as shapes in 1- and 2-dimensional space. As such, the -sphere is the setting for -dimensional spherical geometry.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

In mathematics, the isoperimetric inequality is a geometric inequality involving the square of the circumference of a closed curve in the plane and the area of a plane region it encloses, as well as its various generalizations. Isoperimetric literally means "having the same perimeter". Specifically, the isoperimetric inequality states, for the length L of a closed curve and the area A of the planar region that it encloses, that

In the mathematical field of analysis, the Wirtinger inequality is an important inequality for functions of a single variable, named after Wilhelm Wirtinger. It was used by Adolf Hurwitz in 1901 to give a new proof of the isoperimetric inequality for curves in the plane. A variety of closely related results are today known as Wirtinger's inequality, all of which can be viewed as certain forms of the Poincaré inequality.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In geometry, the area enclosed by a circle of radius r is πr2. Here, the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<span class="mw-page-title-main">Systolic geometry</span> Form of differential geometry

In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also Introduction to systolic geometry.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

In differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus.

In Riemannian geometry, Gromov's optimal stable 2-systolic inequality is the inequality

In the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983; it can be viewed as a generalisation, albeit non-optimal, of Loewner's torus inequality and Pu's inequality for the real projective plane.

In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points.

In Riemannian geometry, the filling radius of a Riemannian manifold X is a metric invariant of X. It was originally introduced in 1983 by Mikhail Gromov, who used it to prove his systolic inequality for essential manifolds, vastly generalizing Loewner's torus inequality and Pu's inequality for the real projective plane, and creating systolic geometry in its modern form.

In mathematics, a space, where is a real number, is a specific type of metric space. Intuitively, triangles in a space are "slimmer" than corresponding "model triangles" in a standard space of constant curvature . In a space, the curvature is bounded from above by . A notable special case is ; complete spaces are known as "Hadamard spaces" after the French mathematician Jacques Hadamard.

<span class="mw-page-title-main">Introduction to systolic geometry</span> Non-technical introduction to systolic geometry

Systolic geometry is a branch of differential geometry, a field within mathematics, studying problems such as the relationship between the area inside a closed curve C, and the length or perimeter of C. Since the area A may be small while the length l is large, when C looks elongated, the relationship can only take the form of an inequality. What is more, such an inequality would be an upper bound for A: there is no interesting lower bound just in terms of the length.

In mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949. Given a closed surface, its systole, denoted sys, is defined to be the least length of a loop that cannot be contracted to a point on the surface. The systolic area of a metric is defined to be the ratio area/sys2. The systolic ratio SR is the reciprocal quantity sys2/area. See also Introduction to systolic geometry.

In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit -sphere is an -sphere of unit radius in -dimensional Euclidean space; the unit circle is a special case, the unit -sphere in the plane. An (open) unit ball is the region inside of a unit sphere, the set of points of distance less than 1 from the center.

References