Pulsation reactor

Last updated

Pulsation reactor technology is a thermal procedure for manufacturing fine powders with precisely defined properties.

Contents

Pulsation reactor technology is a thermal procedure with a special functional principle that results in reaction parameters and a reaction medium, and which ultimately leads to other property parameters in terms of surface, reactivity, homogeneity and particle size of the powder material.

The technology has proven particularly effective in the manufacture of ceramic and submicroscale powders, as well as in the production of highly active catalysts. Also, simple oxides such as zirconium oxide with doping elements or mixed oxides like spinel can be produced in the pulsation reactor.

History

Self-priming ARGUS-Schmidt pipe Selbstansaugendes ARGUS-Schmidt Rohr.jpg
Self-priming ARGUS-Schmidt pipe

A British scientist called B. Higgins discovered the phenomenon of the pulsating flame in 1777. The phenomenon was described in specialist literature as the “singing flame”. However, no suitable application was found until 1930. Paul Schmidt was the first to employ the pulsating flame with the invention of the ARGUS-Schmidt pipe (Figure 1). Pulsating combustion was also used to generate hot gas for heating purposes and to fire boilers.

The principle was tested in the eighties at the SKET Institute in Weimar to determine the suitability of pulsating combustion as a unit for performing thermal, material-modifying processes. The unit was already being referred to as a pulsation reactor by the Institute at that time. As well as the process of cement clinker firing, the manufacture of polishing agents from iron oxalate for the optical industry and the manufacture of surface-active catalyst substrates from gibbsite were also investigated.

Pulsation reactor technology came to the fore from the nineties through its use in environmental technology, particularly in sludge drying and the regeneration of resin-bonded foundry sands. From 2000 the pulsation reactor was used to produce catalytic powders on an industrial scale.

The principle of pulsating combustion was developed over the years by the company IBU-tec advanced materials AG (which emerged from the SKET Institute and still exists today), which finally tested and commissioned another test facility in 2008. Thanks to the continuous optimisation of the reactors, it was now possible to use an oxidising, inert or reducing hot gas atmosphere to treat materials as required. It also emerged that the improved plant was particularly suitable for manufacturing fine particles and catalytic powders.

Today pulsation reactor technology has become established in chemical process engineering for manufacturing active particles with microstructural properties.

Structure and functionality

Fundamentally, a pulsation reactor can be described as a periodically transient tube-type reactor that can be used to thermally treat gas-borne matter. The pulsating flow of hot gas is generated within a hot gas generator in the reactor by burning natural gas or hydrogen with ambient air. The hot gas flows through the so-called “resonance tube” into which reactants in powder, liquid or gas form can be added. The reactant is treated by hot gas flowing through the resonance tube and this process ends through suitable cooling. The finished product is separated in a cleanable filter. The product can be removed throughout the ongoing process using a sluice system and collected in barrels or big bags. The risk of the product contaminating the environment can be completely excluded through the vacuum present in the reactor, including the filter.

Schematic structure of a pulsation reactor Schematic structure of a pulsation reactor.jpg
Schematic structure of a pulsation reactor

An almost tube-like flow with an almost constant temperature across the pipe diameter is generated in the resonance tube (the treatment area for the reactant) through the pulsating flow of hot gas. This tube-shaped flow results in a narrow residence time distribution. Furthermore, the pulsating hot gas flow results in an increased convective heat and mass transfer to and/or from the particles.

Hot gas can be generated in two different ways. Either the hot gas generator works with a high level of excess air (λ ≥ 2) or the hot gas atmosphere can be generated with little oxygen or none at all. The hot gas temperatures in the pulsation reactor range from 250° - 1,350 °C (expansion to higher temperatures is in progress). However, the actual treatment temperature may differ significantly from these values after the reactant has been added. The necessary treatment temperature can be determined through systematic experiments with temperature variation.

In addition to the treatment temperature and the type of hot gas atmosphere, pulsation reactors also provide the option of adjusting the frequency and amplitude of the pulsation (i.e. the spatially oscillating flow of hot gas) according to the material to be treated, without changing the geometry of the plant.

Specific process features

The pulsating flow of hot gas in the pulsation reactor enables very high heating rates and a significantly increased transfer of heat from the hot gas to the particle in the thermal process. This is beneficial for determining a specific particle size, surface condition and phase composition.

The use of combustible reactants is not essential with the pulsation reactor. Both combustible and non-combustible reactants can be used in it.

The even temperature distribution in the reactor well and the narrow residence time distribution prevents the formation of hard aggregates whilst allowing the homogenous treatment of material.

The temperature range covered by the pulsation reactor is considerably higher than in spray dryers, for example, so that gentle drying is only possible to a certain extent but a combination of drying and calcination is feasible.

Properties of the pulsation reactor

Valuable material properties

Application

Patents

Sources

Related Research Articles

In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic or another metal. They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation, limiting their use in the very harshest environments.

Spray drying

Spray drying is a method of producing a dry powder from a liquid or slurry by rapidly drying with a hot gas. This is the preferred method of drying of many thermally-sensitive materials such as foods and pharmaceuticals, or materials which may require extremely consistent, fine, particle size. Air is the heated drying medium; however, if the liquid is a flammable solvent such as ethanol or the product is oxygen-sensitive then nitrogen is used.

Powder metallurgy Process of sintering metal powders

Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can avoid, or greatly reduce, the need to use metal removal processes, thereby drastically reducing yield losses in manufacture and often resulting in lower costs.

Heat pipe Heat-transfer device that employs phase transition

A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces.

Selective laser sintering 3D printing technique

Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power source to sinter powdered material, aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure. It is similar to selective laser melting; the two are instantiations of the same concept but differ in technical details. SLS is a relatively new technology that so far has mainly been used for rapid prototyping and for low-volume production of component parts. Production roles are expanding as the commercialization of AM technology improves.

Fluidization

Fluidization is a process similar to liquefaction whereby a granular material is converted from a static solid-like state to a dynamic fluid-like state. This process occurs when a fluid is passed up through the granular material.

Chemical reactor

A chemical reactor is an enclosed volume in which a chemical reaction takes place. In chemical engineering, it is generally understood to be a process vessel used to carry out a chemical reaction, which is one of the classic unit operations in chemical process analysis. The design of a chemical reactor deals with multiple aspects of chemical engineering. Chemical engineers design reactors to maximize net present value for the given reaction. Designers ensure that the reaction proceeds with the highest efficiency towards the desired output product, producing the highest yield of product while requiring the least amount of money to purchase and operate. Normal operating expenses include energy input, energy removal, raw material costs, labor, etc. Energy changes can come in the form of heating or cooling, pumping to increase pressure, frictional pressure loss or agitation.

A coolant is a substance, typically liquid or gas, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosion of the cooling system. Some applications also require the coolant to be an electrical insulator.

Metal foam

A metal foam is a cellular structure consisting of a solid metal with gas-filled pores comprising a large portion of the volume. The pores can be sealed or interconnected. The defining characteristic of metal foams is a high porosity: typically only 5–25% of the volume is the base metal. The strength of the material is due to the square–cube law.

Fluidized bed

A fluidized bed is a physical phenomenon that occurs when a solid particulate substance is under the right conditions so that it behaves like a fluid. The usual way to achieve a fluidize bed is to pump pressurized fluid into the particles. The resulting medium then has many properties and characteristics of normal fluids, such as the ability to free-flow under gravity, or to be pumped using fluid technologies.

Static mixer

A static mixer is a precision engineered device for the continuous mixing of fluid materials, without moving components. Normally the fluids to be mixed are liquid, but static mixers can also be used to mix gas streams, disperse gas into liquid or blend immiscible liquids. The energy needed for mixing comes from a loss in pressure as fluids flow through the static mixer. One design of static mixer is the plate-type mixer and another common device type consists of mixer elements contained in a cylindrical (tube) or squared housing. Mixer size can vary from about 6 mm to 6 meters diameter. Typical construction materials for static mixer components include stainless steel, polypropylene, Teflon, PVDF, PVC, CPVC and polyacetal. The latest designs involve static mixing elements made of glass-lined steel.

Titanium powder metallurgy (P/M) offers the possibility of creating net shape or near net shape parts without the material loss and cost associated with having to machine intricate components from wrought billet. Powders can be produced by the blended elemental technique or by pre-alloying and then consolidated by metal injection moulding, hot isostatic pressing, direct powder rolling or laser engineered net shaping.

In flow chemistry, a chemical reaction is run in a continuously flowing stream rather than in batch production. In other words, pumps move fluid into a reactor, and where tubes join one another, the fluids contact one another. If these fluids are reactive, a reaction takes place. Flow chemistry is a well-established technique for use at a large scale when manufacturing large quantities of a given material. However, the term has only been coined recently for its application on a laboratory scale by chemists and describes small pilot plants, and lab-scale continuous plants. Often, microreactors are used.

Fluidized bed reactor Reactor carrying multiphase chemical reactions with solid particles suspended in an ascending fluid

A fluidized bed reactor (FBR) is a type of reactor device that can be used to carry out a variety of multiphase chemical reactions. In this type of reactor, a fluid is passed through a solid granular material at high enough speeds to suspend the solid and cause it to behave as though it were a fluid. This process, known as fluidization, imparts many important advantages to an FBR. As a result, FBRs are used for many industrial applications.

Chemical vapour infiltration (CVI) is a ceramic engineering process whereby matrix material is infiltrated into fibrous preforms by the use of reactive gases at elevated temperature to form fiber-reinforced composites. The earliest use of CVI was the infiltration of fibrous alumina with chromium carbide. CVI can be applied to the production of carbon-carbon composites and ceramic-matrix composites. A similar technique is chemical vapour deposition (CVD), the main difference being that the deposition of CVD is on hot bulk surfaces, while CVI deposition is on porous substrates.

Self-propagating high-temperature synthesis (SHS) is a method for producing both inorganic and organic compounds by exothermic combustion reactions in solids of different nature. Reactions can occur between a solid reactant coupled with either a gas, liquid, or other solid. If the reactants, intermediates, and products are all solids, it is known as a solid flame. If the reaction occurs between a solid reactant and a gas phase reactant, it is called infiltration combustion. Since the process occurs at high temperatures, the method is ideally suited for the production of refractory materials including powders, metallic alloys, or ceramics.

Porous glass is glass that includes pores, usually in the nanometre- or micrometre-range, commonly prepared by one of the following processes: through metastable phase separation in borosilicate glasses (such as in their system SiO2-B2O3-Na2O), followed by liquid extraction of one of the formed phases; through the sol-gel process; or simply by sintering glass powder.

The 1960s were the incipient period of thermal plasma technology, spurred by the needs of aerospace programs. Among the various methods of thermal plasma generation, induction plasma takes up an important role.

Hot pressing is a high-pressure, low-strain-rate powder metallurgy process for forming of a powder or powder compact at a temperature high enough to induce sintering and creep processes. This is achieved by the simultaneous application of heat and pressure.

As an extension of the fluidized bed family of separation processes, the flash reactor (FR) employs turbulent fluid introduced at high velocities to encourage chemical reactions with feeds and subsequently achieve separation through the chemical conversion of desired substances to different phases and streams. A flash reactor consists of a main reaction chamber and an outlet for separated products to enter downstream processes.