Pulse-chase analysis

Last updated
Pulse-chase analysis of auxin signal transduction in an Arabidopsis thaliana wildtype and an axr2-1 mutant. Wild-type and axr2-1 seedlings were labeled with 35S-methionine, and AXR2/axr2-1 protein was immunoprecipitated either immediately after the labeling period (t = 0) or following a 15-minute chase with unlabeled methionine (t = 15). Pulse-chase analysis of auxin signal transduction in Arabidopsis thaliana wildtype and mutant.png
Pulse-chase analysis of auxin signal transduction in an Arabidopsis thaliana wildtype and an axr2-1 mutant. Wild-type and axr2-1 seedlings were labeled with 35S-methionine, and AXR2/axr2-1 protein was immunoprecipitated either immediately after the labeling period (t = 0) or following a 15-minute chase with unlabeled methionine (t = 15).

In biochemistry and molecular biology, a pulse-chase analysis is a method for examining a cellular process occurring over time by successively exposing the cells to a labeled compound (pulse) and then to the same compound in an unlabeled form (chase). [1]

Contents

Mechanism

A selected cell or a group of cells is first exposed to a labeled compound (the pulse) that is to be incorporated into a molecule or system that is studied (also see pulse labeling). The compound then goes through the metabolic pathways and is used in the synthesis of the product studied. For example, a radioactively labeled form of leucine (3H-leucine) can be supplied to a group of pancreatic beta cells, which then uses this amino acid in insulin synthesis.

Shortly after introduction of the labeled compound (usually about 5 minutes, but the actual time needed is dependent on the object studied), excess of the same, but unlabeled, substance (the chase) is introduced into the environment. Following the previous example, the production of insulin would continue, but it would no longer contain the radioactive leucine introduced in the pulse phase and would not be visible using radioactive detection methods. However, the movement of the labeled insulin produced during the pulse period could still be tracked within the cell. [2]

Uses

This method is useful for determining the activity of certain cells over a prolonged period of time. The method has been used to study protein kinase C, ubiquitin, and many other proteins. The method was also used to prove the existence and function of Okazaki fragments. George Palade used pulse-chase of radioactive amino acids to elucidate the secretory pathway. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Hershey–Chase experiment</span> DNA experiment

The Hershey–Chase experiments were a series of experiments conducted in 1952 by Alfred Hershey and Martha Chase that helped to confirm that DNA is genetic material.

<span class="mw-page-title-main">Protein kinase</span> Enzyme that adds phosphate groups to other proteins

A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a functional change of the target protein (substrate) by changing enzyme activity, cellular location, or association with other proteins. The human genome contains about 500 protein kinase genes and they constitute about 2% of all human genes. There are two main types of protein kinase. The great majority are serine/threonine kinases, which phosphorylate the hydroxyl groups of serines and threonines in their targets and most of the others are tyrosine kinases, although additional types exist. Protein kinases are also found in bacteria and plants. Up to 30% of all human proteins may be modified by kinase activity, and kinases are known to regulate the majority of cellular pathways, especially those involved in signal transduction.

<span class="mw-page-title-main">Leucine</span> Chemical compound

Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG.

<span class="mw-page-title-main">Marshall Warren Nirenberg</span> American biochemist and geneticist

Marshall Warren Nirenberg was an American biochemist and geneticist. He shared a Nobel Prize in Physiology or Medicine in 1968 with Har Gobind Khorana and Robert W. Holley for "breaking the genetic code" and describing how it operates in protein synthesis. In the same year, together with Har Gobind Khorana, he was awarded the Louisa Gross Horwitz Prize from Columbia University.

Isotopic labeling is a technique used to track the passage of an isotope through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific atoms by their isotope. The reactant is then allowed to undergo the reaction. The position of the isotopes in the products is measured to determine the sequence the isotopic atom followed in the reaction or the cell's metabolic pathway. The nuclides used in isotopic labeling may be stable nuclides or radionuclides. In the latter case, the labeling is called radiolabeling.

Chemical biology is a scientific discipline spanning the fields of chemistry and biology. The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and manipulation of biological systems. In contrast to biochemistry, which involves the study of the chemistry of biomolecules and regulation of biochemical pathways within and between cells, chemical biology deals with chemistry applied to biology.

<span class="mw-page-title-main">Branched-chain amino acid</span> Amino acid with a branched carbon chain

A branched-chain amino acid (BCAA) is an amino acid having an aliphatic side-chain with a branch. Among the proteinogenic amino acids, there are three BCAAs: leucine, isoleucine, and valine. Non-proteinogenic BCAAs include 2-aminoisobutyric acid.

<span class="mw-page-title-main">Lipid signaling</span> Biological signaling using lipid molecules

Lipid signaling, broadly defined, refers to any biological signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

<span class="mw-page-title-main">Stable isotope labeling by amino acids in cell culture</span>

Stable Isotope Labeling by/with Amino acids in Cell culture (SILAC) is a technique based on mass spectrometry that detects differences in protein abundance among samples using non-radioactive isotopic labeling. It is a popular method for quantitative proteomics.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

The PHLPP isoforms are a pair of protein phosphatases, PHLPP1 and PHLPP2, that are important regulators of Akt serine-threonine kinases and conventional/novel protein kinase C (PKC) isoforms. PHLPP may act as a tumor suppressor in several types of cancer due to its ability to block growth factor-induced signaling in cancer cells.

<span class="mw-page-title-main">EIF4EBP1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 4E-binding protein 1 is a protein that in humans is encoded by the EIF4EBP1 gene.

Photo-reactive amino acid analogs are artificial analogs of natural amino acids that can be used for crosslinking of protein complexes. Photo-reactive amino acid analogs may be incorporated into proteins and peptides in vivo or in vitro. Photo-reactive amino acid analogs in common use are photoreactive diazirine analogs to leucine and methionine, and para-benzoylphenylalanine. Upon exposure to ultraviolet light, they are activated and covalently bind to interacting proteins that are within a few angstroms of the photo-reactive amino acid analog.

<span class="mw-page-title-main">MAPK8IP1</span>

C-jun-amino-terminal kinase-interacting protein 1 is an enzyme that in humans is encoded by the MAPK8IP1 gene.

<span class="mw-page-title-main">MAP3K11</span>

Mitogen-activated protein kinase kinase kinase 11 is an enzyme that in humans is encoded by the MAP3K11 gene.

<span class="mw-page-title-main">NCK1</span>

Cytoplasmic protein NCK1 is a protein that in humans is encoded by the NCK1 gene.

<span class="mw-page-title-main">RPTOR</span> Protein-coding gene in the species Homo sapiens

Regulatory-associated protein of mTOR also known as raptor or KIAA1303 is an adapter protein that is encoded in humans by the RPTOR gene. Two mRNAs from the gene have been identified that encode proteins of 1335 and 1177 amino acids long.

<span class="mw-page-title-main">MAP3K12</span>

Mitogen-activated protein kinase 12 is an enzyme that in humans is encoded by the MAP3K12 gene.

<span class="mw-page-title-main">Protein phosphorylation</span> Process of introducing a phosphate group on to a protein

Protein phosphorylation is a reversible post-translational modification of proteins in which an amino acid residue is phosphorylated by a protein kinase by the addition of a covalently bound phosphate group. Phosphorylation alters the structural conformation of a protein, causing it to become either activated or deactivated, or otherwise modifying its function. Approximately 13000 human proteins have sites that are phosphorylated.

<span class="mw-page-title-main">Amino acid kinase</span>

In molecular biology, the amino acid kinase domain is a protein domain. It is found in protein kinases with various specificities, including the aspartate, glutamate and uridylate kinase families. In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In Escherichia coli, thrA, metLM, and lysC encode aspartokinase isozymes that show feedback inhibition by threonine, methionine, and lysine, respectively. The lysine-sensitive isoenzyme of aspartate kinase from spinach leaves has a subunit composition of 4 large and 4 small subunits.

References

  1. Takahashi M, Ono Y (2003). "Pulse-chase analysis of protein kinase C". Protein Kinase C Protocols. Methods Mol. Biol. Vol. 233. pp. 163–70. doi:10.1385/1-59259-397-6:163. ISBN   978-1-59259-397-2. PMID   12840506.
  2. Ferguson PL, Coombs DH (March 2000). "Pulse-chase analysis of the in vivo assembly of the bacteriophage T4 tail". J. Mol. Biol. 297 (1): 99–117. doi:10.1006/jmbi.2000.3551. PMID   10704310.
  3. Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P (April 2006). "Glycine-alanine repeats impair proper substrate unfolding by the proteasome". EMBO J. 25 (8): 1720–9. doi:10.1038/sj.emboj.7601058. PMC   1440830 . PMID   16601692. Figures and tables — showing Pulse-Chase Analysis {{cite journal}}: External link in |quote= (help)
  4. Alberts, B. (March 2002). Molecular Biology of the Cell, Fourth Edition. ISBN   978-0-8153-3218-3.