RASSF9

Last updated
RASSF9
Identifiers
Aliases RASSF9 , P-CIP1, PAMCI, PCIP1, Ras association domain family member 9
External IDs OMIM: 610383 MGI: 2384307 HomoloGene: 3976 GeneCards: RASSF9
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005447

NM_146240

RefSeq (protein)

NP_005438

NP_666352

Location (UCSC) Chr 12: 85.8 – 85.84 Mb Chr 10: 102.35 – 102.39 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Ras association domain-containing protein 9 (RASSF9), also known as PAM COOH-terminal interactor protein 1 (PCIP1) or peptidylglycine alpha-amidating monooxygenase COOH-terminal interactor (PAMCI) is a protein that in humans is encoded by the RASSF9 gene. [5]

Contents

Function

RASSF9 the N-terminal RASSF family member Ras association (RalGDS/AF-6) domain family (N-terminal) member 9 12q21.31, [6] [7] is one of two new wild type RASSF9 and RASSF10 [7] proteins. Three proteins that interact with a fragment of the PAM cytosolic domain containing signaling switch I and II the RA1 and RA2ras complex. [8] RASSF7, the first member of the N-terminal RASSF family is required for mitosis. [7] RASSF9 is recently found to be involved in regulation of epidermal homeostasis. [9]

Regulation

The mutant proregion encoding PAM COOH-terminal interactor protein-1 (P-CIP1) is comparable to that of human band 4.1-like TF (blood plasma protein) as a recycling endosomal pathway [6] in microtubule locations, does NOT bind RasGTP. [10] Specificity of interaction may all be related to microtubule locations of the endosomal-lysosomal system localized within the centrosome with Transferrin and different Ras proteins or with that one (N-Ras), but on the other hand, it interacts with three [11] (Ha-Ras, Ki-Ras, [12] and Rap [13] ) residues function, [14] blocked by a mutation that affects Ras effector function [15] is the critical product of the t (6:11) abnormality associated with some human leukemias. [12] Phosphatidylinositol-3-kinase make contacts with both (6:11) switch I and II [12] regions of ras [8] and yeast adenylyl cyclase molecules carrying these mutations are rendered unactivatable by Ras in vitro. [16] Ras-interacting residues, are appreciably different from that of RalGDS -RBD [17] through their C-terminal Ras-binding domains (RBD). [18] Such outliers as afadin/AF-6 and Rin1 [16] were found to inhibit the binding of Raf to Ras. [14] Adenylyl cyclase molecules carrying these mutations are rendered unactivatable by Ras in vitro with the Ras-associating domain-RA, [16] not all RA domains bind RasGTP it is a primary Ras-binding site.

Interactions

Related Research Articles

<span class="mw-page-title-main">Adenylyl cyclase</span> Enzyme with key regulatory roles in most cells

Adenylate cyclase is an enzyme with systematic name ATP diphosphate-lyase . It catalyzes the following reaction:

c-Raf Mammalian protein found in Homo sapiens

RAF proto-oncogene serine/threonine-protein kinase, also known as proto-oncogene c-RAF or simply c-Raf or even Raf-1, is an enzyme that in humans is encoded by the RAF1 gene. The c-Raf protein is part of the ERK1/2 pathway as a MAP kinase (MAP3K) that functions downstream of the Ras subfamily of membrane associated GTPases. C-Raf is a member of the Raf kinase family of serine/threonine-specific protein kinases, from the TKL (Tyrosine-kinase-like) group of kinases.

<span class="mw-page-title-main">Signal recognition particle receptor</span>

Signal recognition particle (SRP) receptor, also called the docking protein, is a dimer composed of 2 different subunits that are associated exclusively with the rough ER in mammalian cells. Its main function is to identify the SRP units. SRP is a molecule that helps the ribosome-mRNA-polypeptide complexes to settle down on the membrane of the endoplasmic reticulum.

<span class="mw-page-title-main">Nuclear receptor coactivator 2</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor coactivator 2 also known as NCoA-2 is a protein that in humans is encoded by the NCOA2 gene. NCoA-2 is also frequently called glucocorticoid receptor-interacting protein 1 (GRIP1), steroid receptor coactivator-2 (SRC-2), or transcriptional mediators/intermediary factor 2 (TIF2).

In enzymology, a peptidylglycine monooxygenase (EC 1.14.17.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">RAS p21 protein activator 1</span> Protein-coding gene in the species Homo sapiens

RAS p21 protein activator 1 or RasGAP, also known as RASA1, is a 120-kDa cytosolic human protein that provides two principal activities:

<span class="mw-page-title-main">EPS15</span> Protein-coding gene in the species Homo sapiens

Epidermal growth factor receptor substrate 15 is a protein that in humans is encoded by the EPS15 gene.

<span class="mw-page-title-main">CTBP1</span> Protein-coding gene in the species Homo sapiens

C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the CTBP1 gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2.

<span class="mw-page-title-main">Peptidylglycine alpha-amidating monooxygenase</span> Protein-coding gene in the species Homo sapiens

Peptidyl-glycine alpha-amidating monooxygenase, or PAM, is an enzyme that catalyzes the conversion of an n+1 residue long peptide with a C-terminal glycine into an n-residue peptide with a terminal amide group. In the process, one molecule of O2 is consumed and the glycine residue is removed from the peptide and converted to glyoxylic acid.

<span class="mw-page-title-main">RALBP1</span> Protein-coding gene in the species Homo sapiens

RalA-binding protein 1 is a protein that in humans is encoded by the RALBP1 gene.

<span class="mw-page-title-main">RALGDS</span> Protein-coding gene in the species Homo sapiens

Ral guanine nucleotide dissociation stimulator is a protein that is encoded by the RALGDS gene in humans.

<span class="mw-page-title-main">ADCY5</span> Protein-coding gene in the species Homo sapiens

Adenylyl cyclase type 5 is an enzyme that in humans is encoded by the ADCY5 gene.

<span class="mw-page-title-main">CENPC1</span> Protein-coding gene in the species Homo sapiens

Centromere protein C 1 is a protein that in humans is encoded by the CENPC1 gene.

<span class="mw-page-title-main">RALB</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Ral-B (RalB) is a protein that in humans is encoded by the RALB gene on chromosome 2. This protein is one of two paralogs of the Ral protein, the other being RalA, and part of the Ras GTPase family. RalA functions as a molecular switch to activate a number of biological processes, majorly cell division and transport, via signaling pathways. Its biological role thus implicates it in many cancers.

<span class="mw-page-title-main">MYCBP2</span> Protein-coding gene in the species Homo sapiens

Probable E3 ubiquitin-protein ligase MYCBP2 also known as myc-binding protein 2 or protein associates with myc (PAM) is an enzyme that in humans is encoded by the MYCBP2 gene.

<span class="mw-page-title-main">CAP1</span> Gene of the species Homo sapiens

Adenylyl cyclase-associated protein 1 is an enzyme that in humans is encoded by the CAP1 gene.

<span class="mw-page-title-main">RASSF2</span> Protein-coding gene in the species Homo sapiens

Ras association domain-containing protein 2 is a protein that in humans is encoded by the RASSF2 gene.

<span class="mw-page-title-main">RASSF8</span> Protein-coding gene in the species Homo sapiens

Ras association domain-containing protein 8 is a protein that in humans is encoded by the RASSF8 gene.

<span class="mw-page-title-main">Sorting nexin</span>

Sorting nexins are a large group of proteins that are localized in the cytoplasm and have the potential for membrane association either through their lipid-binding PX domain or through protein–protein interactions with membrane-associated protein complexes Some members of this family have been shown to facilitate protein sorting.

<span class="mw-page-title-main">Cyclase-associated protein family</span>

In molecular biology, the cyclase-associated protein family (CAP) is a family of highly conserved actin-binding proteins present in a wide range of organisms including yeast, flies, plants, and mammals. CAPs are multifunctional proteins that contain several structural domains. CAP is involved in species-specific signalling pathways. In Drosophila, CAP functions in Hedgehog-mediated eye development and in establishing oocyte polarity. In Dictyostelium discoideum, CAP is involved in microfilament reorganisation near the plasma membrane in a PIP2-regulated manner and is required to perpetuate the cAMP relay signal to organise fruitbody formation. In plants, CAP is involved in plant signalling pathways required for co-ordinated organ expansion. In yeast, CAP is involved in adenylate cyclase activation, as well as in vesicle trafficking and endocytosis. In both yeast and mammals, CAPs appear to be involved in recycling G-actin monomers from ADF/cofilins for subsequent rounds of filament assembly. In mammals, there are two different CAPs that share 64% amino acid identity.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000198774 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000044921 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Ras association (RalGDS/AF-6) domain family (N-terminal) member 9".
  6. 1 2 Chen L, Johnson RC, Milgram SL (December 1998). "P-CIP1, a novel protein that interacts with the cytosolic domain of peptidylglycine alpha-amidating monooxygenase, is associated with endosomes". J Biol Chem. 273 (50): 33524–32. doi: 10.1074/jbc.273.50.33524 . PMID   9837933.
  7. 1 2 3 Sherwood V, Manbodh R, Sheppard C, Chalmers AD (April 2008). "RASSF7 is a member of a new family of RAS association domain-containing proteins and is required for completing mitosis". Mol Biol Cell. 19 (4): 1772–82. doi:10.1091/mbc.E07-07-0652. PMC   2291435 . PMID   18272789.
  8. 1 2 Bunney TD, Harris R, Gandarillas NL, Josephs MB, Roe SM, Sorli SC, Paterson HF, Rodrigues-Lima F, Esposito D, Ponting CP, Gierschik P, Pearl LH, Driscoll PC, Katan M (February 2006). "Structural and mechanistic insights into ras association domains of phospholipase C epsilon". Mol Cell. 21 (4): 495–507. doi: 10.1016/j.molcel.2006.01.008 . PMID   16483931.
  9. Lee CM, Yang P, Chen LC, Chen CC, Wu SC, Cheng HY, Chang YS (21 March 2011). "A Novel Role of RASSF9 in Maintaining Epidermal Homeostasis". PLOS ONE. 6 (3): e17867. Bibcode:2011PLoSO...617867L. doi: 10.1371/journal.pone.0017867 . PMC   3061870 . PMID   21445300.
  10. Wojcik J, Girault JA, Labesse G, Chomilier J, Mornon JP, Callebaut I (May 1999). "Sequence analysis identifies a ras-associating (RA)-like domain in the N-termini of band 4.1/JEF domains and in the Grb7/10/14 adapter family". Biochem Biophys Res Commun. 259 (1): 113–20. doi:10.1006/bbrc.1999.0727. PMID   10334925.
  11. Huang L, Weng X, Hofer F, Martin GS, Kim SH (August 1997). "Three-dimensional structure of the Ras-interacting domain of RalGDS". Nature Structural & Molecular Biology. 4 (8): 609–15. doi:10.1038/nsb0897-609. PMID   9253406. S2CID   1328881.
  12. 1 2 3 Kuriyama M, Harada N, Kuroda S, Yamamoto T, Nakafuku M, Iwamatsu A, Yamamoto D, Prasad R, Croce C, Canaani E, Kaibuchi K (January 1996). "Identification of AF-6 and canoe as putative targets for Ras". J Biol Chem. 271 (2): 607–10. doi: 10.1074/jbc.271.2.607 . PMID   8557659.
  13. Katagiri K, Imamura M, Kinashi T (September 2006). "Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion". Nat Immunol. 7 (9): 919–28. doi:10.1038/ni1374. PMID   16892067. S2CID   12337748.
  14. 1 2 Hofer F, Fields S, Schneider C, Martin GS (November 1994). "Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator". Proc Natl Acad Sci U S A. 91 (23): 11089–93. Bibcode:1994PNAS...9111089H. doi: 10.1073/pnas.91.23.11089 . PMC   45172 . PMID   7972015.
  15. Wang J, Williams RW, Manly KF (2003). " BioGPS: NM_005447,. WebQTL: web-based complex trait analysis". Neuroinformatics. 1 (4): 299–08. doi:10.1385/NI:1:4:299. PMID   15043217. S2CID   195348266. Archived from the original on 2017-08-10. Retrieved 2010-12-06.
  16. 1 2 3 Kido M, Shima F, Satoh T, Asato T, Kariya K, Kataoka T (February 2002). "Critical function of the Ras-associating domain as a primary Ras-binding site for regulation of Saccharomyces cerevisiae adenylyl cyclase". J Biol Chem. 277 (5): 3117–23. doi: 10.1074/jbc.M109526200 . hdl: 20.500.14094/D1002436 . PMID   11723130.
  17. Kigawa T, Endo M, Ito Y, Shirouzu M, Kikuchi A, Yokoyama S (December 1998). "Solution structure of the Ras-binding domain of RGL". FEBS Lett. 441 (3): 413–8. doi:10.1016/S0014-5793(98)01596-8. PMID   9891982. S2CID   23727331.
  18. Esser D, Bauer B, Wolthuis RM, Wittinghofer A, Cool RH, Bayer P (September 1998). "Structure determination of the Ras-binding domain of the Ral-specific guanine nucleotide exchange factor Rlf". Biochemistry. 37 (39): 13453–62. doi:10.1021/bi9811664. PMID   9753431.
  19. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (December 2004). "STRING: known and predicted protein-protein associations, integrated and transferred across organisms". Nucleic Acids Res. 33 (Database issue): D433–D437. doi:10.1093/nar/gki005. PMC   539959 . PMID   15608232.[ permanent dead link ]

Further reading