Radiata

Last updated

Radiata
Temporal range: Ediacaran – Present
Jean Louis Agassiz 1870.jpg
Louis Agassiz in 1870, with drawings of animals then considered Radiates
Scientific classification
Kingdom:
Subkingdom:
(unranked):
Radiata

Radiata or Radiates is a historical taxonomic rank that was used to classify animals with radially symmetric body plans. The term Radiata is no longer accepted, as it united several different groupings of animals that do not form a monophyletic group under current views of animal phylogeny. The similarities once offered in justification of the taxon, such as radial symmetry, are now taken to be the result of either incorrect evaluations by early researchers or convergent evolution, rather than an indication of a common ancestor. Because of this, the term is used mostly in a historical context. [1]

In the early 19th century, Georges Cuvier united Ctenophora and Cnidaria in the Radiata ( Zoophytes ). [2] Thomas Cavalier-Smith, in 1983, redefined Radiata as a subkingdom consisting of Myxozoa, Placozoa, Cnidaria and Ctenophora. [3] Lynn Margulis and K. V. Schwartz later redefined Radiata in their Five Kingdom classification, this time including only Cnidaria and Ctenophora. [4] This definition is similar to the historical descriptor Coelenterata, which has also been proposed as a group encompassing Cnidaria and Ctenophora. [5] [6]

Although radial symmetry is usually given as a defining characteristic in animals that have been classified in this group, there are clear exceptions and qualifications. Echinoderms, for example, exhibit unmistakable bilateral symmetry as larvae, and are now in the Bilateria. Ctenophores exhibit biradial or rotational symmetry, defined by tentacular and pharyngeal axes, on which two anal canals are located in two diametrically opposed quadrants. [7] Some species within the cnidarian class Anthozoa are bilaterally symmetric (For example, Nematostella vectensis ). It has been suggested that bilateral symmetry may have evolved before the split between Cnidaria and Bilateria, and that the radially symmetrical cnidarians have secondarily evolved radial symmetry, meaning the bilaterality in cnidarian species like N. vectensis has a primary origin. [8]

The differing definitions assigned by zoologists are listed in the table.

AuthorWorkDateName of groupTaxa includedLevel of group
Cuvier Le Règne Animal [2] 1817 Zoophytes
(Radiata in English translations)
Échinodermes, Intestinaux (parasitic worms), Acalèphes (Ctenophora), Polypes (Cnidaria), Infusoires Embranchement (1 of 4)
Cavalier-Smith "A 6-kingdom classification and a unified phylogeny" [3] 1983Radiata Myxozoa, Placozoa, Cnidaria, Ctenophora Subkingdom
Margulis,
Schwartz
Five Kingdoms [4] 1988Radiata Cnidaria, Ctenophora Subkingdom
Philippe et al."Phylogenomics Revives Traditional Views on Deep Animal Relationships" [5] 2009 Coelenterata Cnidaria, Ctenophora Proposed clade

Related Research Articles

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, including jellyfish, hydroids, sea anemone, corals and some of the smallest marine parasites. Their distinguishing feature is the cnidocytes, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick.

<span class="mw-page-title-main">Placozoa</span> Basal form of free-living invertebrate

Placozoa is a phylum of marine and free-living (non-parasitic) animals. They are simple blob-like animals without any body part or organ, and are merely aggregates of cells. Moving in water by ciliary motion, eating food by engulfment, reproducing by fission or budding, placozoans are described as "the simplest animals on Earth." Structural and molecular analyses have supported them as among the most basal animals, thus, constituting the most primitive metazoan phylum.

<span class="mw-page-title-main">Cnidocyte</span> Explosive cell containing one giant secretory organelle (cnida)

A cnidocyte is an explosive cell containing one large secretory organelle called a cnidocyst that can deliver a sting to other organisms. The presence of this cell defines the phylum Cnidaria. Cnidae are used to capture prey and as a defense against predators. A cnidocyte fires a structure that contains a toxin within the cnidocyst; this is responsible for the stings delivered by a cnidarian.

<span class="mw-page-title-main">Bilateria</span> Animals with embryonic bilateral symmetry

Bilateria is a large clade/superphylum of animals called bilaterians, characterized by bilateral symmetry during embryonic development. This means their body plans are laid around a longitudinal axis with a front and a rear end, as well as a left-right-symmetrical belly (ventral) and back (dorsal) surface. Nearly all bilaterians maintain a bilaterally symmetrical body as adults; the most notable exception is the echinoderms, which achieve secondary pentaradial symmetry as adults, but are bilaterally symmetrical as an embryo. Cephalization is also a characteristic feature among most bilaterians, where the special sense organs and central nerve ganglia become concentrated at the front/rostral end.

<span class="mw-page-title-main">Ctenophora</span> Phylum of gelatinous marine animals

Ctenophora comprise a phylum of marine invertebrates, commonly known as comb jellies, that inhabit sea waters worldwide. They are notable for the groups of cilia they use for swimming, and they are the largest animals to swim with the help of cilia.

<span class="mw-page-title-main">Myxozoa</span> Group of marine parasites

Myxozoa is a subphylum of aquatic cnidarian animals – all obligate parasites. It contains the smallest animals ever known to have lived. Over 2,180 species have been described and some estimates have suggested at least 30,000 undiscovered species. Many have a two-host lifecycle, involving a fish and an annelid worm or a bryozoan. The average size of a myxosporean spore usually ranges from 10 μm to 20 μm, whereas that of a malacosporean spore can be up to 2 mm. Myxozoans can live in both freshwater and marine habitats.

<span class="mw-page-title-main">Eumetazoa</span> Basal animal clade as a sister group of the Porifera

Eumetazoa, also known as diploblasts, Epitheliozoa, or Histozoa, are a proposed basal animal clade as a sister group of the Porifera (sponges). The basal eumetazoan clades are the Ctenophora and the ParaHoxozoa. Placozoa is now also seen as a eumetazoan in the ParaHoxozoa. The competing hypothesis is the Myriazoa clade.

<span class="mw-page-title-main">Nerve net</span> Nervous systems lacking a brain

A nerve net consists of interconnected neurons lacking a brain or any form of cephalization. While organisms with bilateral body symmetry are normally associated with a condensation of neurons or, in more advanced forms, a central nervous system, organisms with radial symmetry are associated with nerve nets, and are found in members of the Ctenophora, Cnidaria, and Echinodermata phyla, all of which are found in marine environments. In the Xenacoelomorpha, a phylum of bilaterally symmetrical animals, members of the subphylum Xenoturbellida also possess a nerve net. Nerve nets can provide animals with the ability to sense objects through the use of the sensory neurons within the nerve net.

<span class="mw-page-title-main">Cephalization</span> Evolutionary trend of a head region developing

Cephalization is an evolutionary trend in which, over many generations, the mouth, sense organs, and nerve ganglia become concentrated at the front end of an animal, producing a head region. This is associated with movement and bilateral symmetry, such that the animal has a definite head end. This led to the formation of a highly sophisticated brain in three groups of animals, namely the arthropods, cephalopod molluscs, and vertebrates.

<span class="mw-page-title-main">Symmetry in biology</span> Geometric symmetry in living beings

Symmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symmetry down its centre, or a pine cone displays a clear symmetrical spiral pattern. Internal features can also show symmetry, for example the tubes in the human body which are cylindrical and have several planes of symmetry.

<span class="mw-page-title-main">Cellularization</span> Scientific theory to explain the origin and formation of cells

In evolutionary biology, the term cellularization (cellularisation) has been used in theories to explain the evolution of cells, for instance in the pre-cell theory, dealing with the evolution of the first cells on this planet, and in the syncytial theory attempting to explain the origin of Metazoa from unicellular organisms.

<span class="mw-page-title-main">Coelenterata</span> Term encompassing animal phyla Cnidaria and Ctenophora

Coelenterata is a term encompassing the animal phyla Cnidaria and Ctenophora. The name comes from Ancient Greek κοῖλος (koîlos) 'hollow', and ἔντερον (énteron) 'intestine', referring to the hollow body cavity common to these two phyla. They have very simple tissue organization, with only two layers of cells, and radial symmetry. Some examples are corals, which are typically colonial, and hydrae, jellyfish, and sea anemones, which are solitary. Coelenterata lack a specialized circulatory system relying instead on diffusion across the tissue layers.

Colloblasts are unique, multicellular structures found in ctenophores. They are widespread in the tentacles of these animals and are used to capture prey. Colloblasts consist of a collocyte containing a coiled spiral filament, internal granules and other organelles.

<span class="mw-page-title-main">Animal</span> Kingdom of living things

Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. As of 2022, 2.16 million living animal species have been described—of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates. It has been estimated there are around 7.77 million animal species. Animals range in length from 8.5 micrometres (0.00033 in) to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology.

<span class="mw-page-title-main">Marine invertebrates</span> Marine animals without a vertebrate column

Marine invertebrates are the invertebrates that live in marine habitats. Invertebrate is a blanket term that includes all animals apart from the vertebrate members of the chordate phylum. Invertebrates lack a vertebral column, and some have evolved a shell or a hard exoskeleton. As on land and in the air, marine invertebrates have a large variety of body plans, and have been categorised into over 30 phyla. They make up most of the macroscopic life in the oceans.

<span class="mw-page-title-main">Planulozoa</span> Planulozoa

Planulozoa is a clade which includes the Placozoa, Cnidaria and the Bilateria. The designation Planulozoa may be considered a synonym to Parahoxozoa. Within Planulozoa, the Placozoa may be a sister of Cnidaria to the exclusion of Bilateria. The clade excludes basal animals such as the Ctenophora, and Porifera (sponges). Although this clade was sometimes used to specify a clade of Cnidaria and Bilateria to the exclusion of Placozoa, this is no longer favoured due to recent data indicating a sister group relationship between Cnidaria and Placozoa.

In evolutionary developmental biology, inversion refers to the hypothesis that during the course of animal evolution, the structures along the dorsoventral (DV) axis have taken on an orientation opposite that of the ancestral form.

<span class="mw-page-title-main">Nephrozoa</span> Clade of animals

Nephrozoa is a major clade of bilaterians, divided into the protostomes and the deuterostomes, containing almost all animal phyla and over a million extant species. Its sister clade is the Xenacoelomorpha. The Ambulacraria are occasionally thought to be sister to the Xenacoelomorpha, forming the Xenambulacraria as basal Deuterostomia, or basal Bilateria invalidating Nephrozoa and Deuterostomia in multiple studies. The coelom, the digestive tract and excretory organs (nephridia), and nerve cords developed in the Nephrozoa. It has been argued that, because protonephridia are only found in protostomes, they cannot be considered a synapomorphy of this group. This would make Nephrozoa an improper name, leaving Eubilateria as this clade's name.

<span class="mw-page-title-main">ParaHoxozoa</span> Clade of all animals except sponges and comb jellies

ParaHoxozoa is a clade of animals that consists of Bilateria, Placozoa, and Cnidaria. The relationship of this clade relative to the two other animal lineages Ctenophora and Porifera is debated. Some phylogenomic studies have presented evidence supporting Ctenophora as the sister to Parahoxozoa and Porifera as the sister group to the rest of animals. Some studies have presented evidence supporting Porifera as the sister to Parahoxozoa and Ctenophora as the sister group to the rest of animals.

<i>Euplokamis</i> Genus of ctenophores

Euplokamis is a genus of ctenophores, or comb jellies, belonging to the monotypic family Euplokamididae. It shares the common name sea gooseberry with species of the genus Pleurobrachia. Despite living for hundreds of millions of years in marine environments, there is minimal research regarding Euplokamis, because they are uncommon. Research on the evolution of the basic body structures of diploblastic metazoans revealed that there are four major phyla, including the Ctenophores. Although the morphology of Euplokamis often resembles the medusa stage of Cnidarians, their eight rows of combs are one distinguishing feature that led to the official classification of Ctenophores. After being originally described by Chun (1879), the family Euplokamididae was expanded by Mills (1987) due to the discovery of a new species, Euplokamis dunlapae. Further research indicated that Euplokamis should be identified from Mertensiidae due to the rows of combs and some compression. They may also be distinguished from the genus Pleurobrachia due to their more elongated shape. Additionally, various adaptations of Euplokamis have been observed such as the use of tentacles for movement/feeding, a complex nervous system, and bioluminescent capabilities. Other characteristics including a defined mesoderm, lack of stinging cells, developmental differences, and symmetry supported the reclassification of these organisms.

References

  1. Hadzi, J. (1963). The Evolution of the Metazoa. New York, NY, USA: The Macmillan Company. pp.  56–57. ISBN   0080100791.
  2. 1 2 Cuvier, Georges (1817). Le Règne Animal Distribué Selon son Organisation, pour Servir de Base à l'Histoire Naturelle des Animaux et d'Introduction à l'Anatomie Comparée. Paris: Déterville.
  3. 1 2 Cavalier-Smith, Thomas (1983). A 6-kingdom classification and a unified phylogeny. in Endocytobiology II. Walter De Gruyter. pp. 1027–1034. ISBN   3110086603.
  4. 1 2 Margulis, Lynn (1988). Five Kingdoms: An illustrated Guide to the Phyla of Life on Earth . New York: W. H. Freeman. ISBN   0716730278.
  5. 1 2 Philippe, Hervé; Derelle, Romain; Lopez, Philippe; Pick, Kerstin; Borchiellini, Carole; Boury-Esnault, Nicole; Vacelet, Jean; Renard, Emmanuelle; Houliston, Evelyn; Quéinnec, Eric; Da Silva, Corinne; Wincker, Patrick; Le Guyader, Hervé; Leys, Sally; Jackson, Daniel J.; Schreiber, Fabian; Erpenbeck, Dirk; Morgenstern, Burkhard; Wörheide, Gert; Manuel, Michaël (April 2009). "Phylogenomics Revives Traditional Views on Deep Animal Relationships". Current Biology. 19 (8): 706–712. doi: 10.1016/j.cub.2009.02.052 . PMID   19345102. S2CID   15282843.
  6. Dunn, Casey W.; Leys, Sally P.; Haddock, Steven H.D. (May 2015). "The hidden biology of sponges and ctenophores". Trends in Ecology & Evolution. 30 (5): 282–291. doi: 10.1016/j.tree.2015.03.003 . PMID   25840473.
  7. Martindale, Mark; Finnerty, J.R.; Henry, J.Q. (September 2002). "The Radiata and the evolutionary origins of the bilaterian body plan". Molecular Phylogenetics and Evolution. 24 (3): 358–365. doi:10.1016/s1055-7903(02)00208-7. PMID   12220977.
  8. Finnerty, J.R.; Pang, K.; Burton, P.; Paulson, D.; Martindale, M.Q. (28 May 2004). "Origins of bilateral symmetry: Hox and dpp expression in a sea anemone". Science. 304 (5675): 1335–1337. Bibcode:2004Sci...304.1335F. doi: 10.1126/science.1091946 . PMID   15131263. S2CID   21555976.