In geometry, Radon's theorem on convex sets, published by Johann Radon in 1921, states that:
Any set of d + 2 points in R d can be partitioned into two sets whose convex hulls intersect.
A point in the intersection of these convex hulls is called a Radon point of the set.
For example, in the case d = 2, any set of four points in the Euclidean plane can be partitioned in one of two ways. It may form a triple and a singleton, where the convex hull of the triple (a triangle) contains the singleton; alternatively, it may form two pairs of points that form the endpoints of two intersecting line segments.
Consider any set of d + 2 points in d-dimensional space. Then there exists a set of multipliers a1, ..., ad + 2, not all of which are zero, solving the system of linear equations
because there are d + 2 unknowns (the multipliers) but only d + 1 equations that they must satisfy (one for each coordinate of the points, together with a final equation requiring the sum of the multipliers to be zero). Fix some particular nonzero solution a1, ..., ad + 2. Let be the set of points with positive multipliers, and let be the set of points with multipliers that are negative or zero. Then and form the required partition of the points into two subsets with intersecting convex hulls.
The convex hulls of and must intersect, because they both contain the point
where
The left hand side of the formula for expresses this point as a convex combination of the points in , and the right hand side expresses it as a convex combination of the points in . Therefore, belongs to both convex hulls, completing the proof.
This proof method allows for the efficient construction of a Radon point, in an amount of time that is polynomial in the dimension, by using Gaussian elimination or other efficient algorithms to solve the system of equations for the multipliers. [1]
An equivalent formulation of Radon's theorem is:
If ƒ is any affine function from a (d + 1)-dimensional simplex Δd+1 to R d, then there are two disjoint faces of Δd+1 whose images under ƒ intersect.
They are equivalent because any affine function on a simplex is uniquely determined by the images of its vertices. Formally, let ƒ be an affine function from Δd+1 to R d. Let be the vertices of Δd+1, and let be their images under ƒ. By the original formulation, the can be partitioned into two disjoint subsets, e.g. (xi)i in I and (xj)j in J, with overlapping convex hull. Because f is affine, the convex hull of (xi)i in I is the image of the face spanned by the vertices (vi)i in I, and similarly the convex hull of (xj)j in J is the image of the face spanned by the vertices (vj)j in j. These two faces are disjoint, and their images under f intersect - as claimed by the new formulation. The topological Radon theorem generalizes this formluation. It allows f to be any continuous function - not necessarily affine: [2]
If ƒ is any continuous function from a (d + 1)-dimensional simplex Δd+1 to R d, then there are two disjoint faces of Δd+1 whose images under ƒ intersect.
More generally, if K is any (d + 1)-dimensional compact convex set, and ƒ is any continuous function from K to d-dimensional space, then there exists a linear function g such that some point where g achieves its maximum value and some other point where g achieves its minimum value are mapped by ƒ to the same point. In the case where K is a simplex, the two simplex faces formed by the maximum and minimum points of g must then be two disjoint faces whose images have a nonempty intersection. This same general statement, when applied to a hypersphere instead of a simplex, gives the Borsuk–Ulam theorem, that ƒ must map two opposite points of the sphere to the same point. [2]
The topological Radon theorem was originally proved by Ervin Bajmóczy and Imre Bárány [2] in the following way:
Another proof was given by László Lovász and Alexander Schrijver. [3] A third proof was given by Jiří Matoušek: [4] : 115
The Radon point of any four points in the plane is their geometric median, the point that minimizes the sum of distances to the other points. [5] [6]
Radon's theorem forms a key step of a standard proof of Helly's theorem on intersections of convex sets; [7] this proof was the motivation for Radon's original discovery of Radon's theorem.
Radon's theorem can also be used to calculate the VC dimension of d-dimensional points with respect to linear separations. There exist sets of d + 1 points (for instance, the points of a regular simplex) such that every two nonempty subsets can be separated from each other by a hyperplane. However, no matter which set of d + 2 points is given, the two subsets of a Radon partition cannot be linearly separated. Therefore, the VC dimension of this system is exactly d + 1. [8]
A randomized algorithm that repeatedly replaces sets of d + 2 points by their Radon point can be used to compute an approximation to a centerpoint of any point set, in an amount of time that is polynomial in both the number of points and the dimension. [1]
Geometric median. The Radon point of three points in a one-dimensional space is just their median. The geometric median of a set of points is the point minimizing the sum of distances to the points in the set; it generalizes the one-dimensional median and has been studied both from the point of view of facility location and robust statistics. For sets of four points in the plane, the geometric median coincides with the Radon point.
Tverberg's theorem. A generalization for partition into r sets was given by HelgeTverberg ( 1966 ) and is now known as Tverberg's theorem. It states that for any set of points in Euclidean d-space, there is a partition into r subsets whose convex hulls intersect in at least one common point.
Carathéodory's theorem states that any point in the convex hull of some set of points is also within the convex hull of a subset of at most d + 1 of the points; that is, that the given point is part of a Radon partition in which it is a singleton. One proof of Carathéodory's theorem uses a technique of examining solutions to systems of linear equations, similar to the proof of Radon's theorem, to eliminate one point at a time until at most d + 1 remain.
Convex geometries. Concepts related to Radon's theorem have also been considered for convex geometries, families of finite sets with the properties that the intersection of any two sets in the family remains in the family, and that the empty set and the union of all the sets belongs to the family. In this more general context, the convex hull of a set S is the intersection of the family members that contain S, and the Radon number of a space is the smallest r such that any r points have two subsets whose convex hulls intersect. Similarly, one can define the Helly number h and the Carathéodory number c by analogy to their definitions for convex sets in Euclidean spaces, and it can be shown that these numbers satisfy the inequalities h < r ≤ ch + 1. [9]
Radon theorem for graphs. In an arbitrary undirected graph, one may define a convex set to be a set of vertices that includes every induced path connecting a pair of vertices in the set. With this definition, every set of ω + 1 vertices in the graph can be partitioned into two subsets whose convex hulls intersect, and ω + 1 is the minimum number for which this is possible, where ω is the clique number of the given graph. [10] For related results involving shortest paths instead of induced paths see Chepoi (1986) and Bandelt & Pesch (1989).
Written in cooperation with Anders Björner and Günter M. Ziegler, Section 4.3
Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function mapping a nonempty compact convex set to itself, there is a point such that . The simplest forms of Brouwer's theorem are for continuous functions from a closed interval in the real numbers to itself or from a closed disk to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset of Euclidean space to itself.
In geometry, a set of points is convex if it contains every line segment between two points in the set. Equivalently, a convex set or a convex region is a set that intersects every line in a line segment, single point, or the empty set. For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.
In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.
In mathematics, an extreme point of a convex set in a real or complex vector space is a point in that does not lie in any open line segment joining two points of In linear programming problems, an extreme point is also called vertex or corner point of
In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool in algebraic topology.
In combinatorics, a Helly family of order k is a family of sets in which every minimal subfamily with an empty intersection has k or fewer sets in it. Equivalently, every finite subfamily such that every k-fold intersection is non-empty has non-empty total intersection. The k-Helly property is the property of being a Helly family of order k.
In set theory and related branches of mathematics, a family can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. Additionally, a family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of . In some contexts, a family of sets may be allowed to contain repeated copies of any given member, and in other contexts it may form a proper class.
In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles, their edges, and their vertices.
Carathéodory's theorem is a theorem in convex geometry. It states that if a point lies in the convex hull of a set , then lies in some -dimensional simplex with vertices in . Equivalently, can be written as the convex combination of at most points in . Additionally, can be written as the convex combination of at most extremal points in , as non-extremal points can be removed from without changing the membership of in the convex hull.
Helly's theorem is a basic result in discrete geometry on the intersection of convex sets. It was discovered by Eduard Helly in 1913, but not published by him until 1923, by which time alternative proofs by Radon (1921) and König (1922) had already appeared. Helly's theorem gave rise to the notion of a Helly family.
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.
In discrete geometry, Tverberg's theorem, first stated by Helge Tverberg in 1966, is the result that sufficiently many points in Euclidean space can be partitioned into subsets with intersecting convex hulls. Specifically, for any positive integers d, r and any set of
In topology, a field of mathematics, the join of two topological spaces and , often denoted by or , is a topological space formed by taking the disjoint union of the two spaces, and attaching line segments joining every point in to every point in . The join of a space with itself is denoted by . The join is defined in slightly different ways in different contexts
In the mathematical theory of functional analysis, the Krein–Milman theorem is a proposition about compact convex sets in locally convex topological vector spaces (TVSs).
In mathematics, Choquet theory, named after Gustave Choquet, is an area of functional analysis and convex analysis concerned with measures which have support on the extreme points of a convex set C. Roughly speaking, every vector of C should appear as a weighted average of extreme points, a concept made more precise by generalizing the notion of weighted average from a convex combination to an integral taken over the set E of extreme points. Here C is a subset of a real vector space V, and the main thrust of the theory is to treat the cases where V is an infinite-dimensional topological vector space along lines similar to the finite-dimensional case. The main concerns of Gustave Choquet were in potential theory. Choquet theory has become a general paradigm, particularly for treating convex cones as determined by their extreme rays, and so for many different notions of positivity in mathematics.
In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E of Rd by a disjoint family extracted from a Vitali covering of E.
A geometric separator is a line that partitions a collection of geometric shapes into two subsets, such that proportion of shapes in each subset is bounded, and the number of shapes that do not belong to any subset is small.
Combinatorial Geometry in the Plane is a book in discrete geometry. It was translated from a German-language book, Kombinatorische Geometrie in der Ebene, which its authors Hugo Hadwiger and Hans Debrunner published through the University of Geneva in 1960, expanding a 1955 survey paper that Hadwiger had published in L'Enseignement mathématique. Victor Klee translated it into English, and added a chapter of new material. It was published in 1964 by Holt, Rinehart and Winston, and republished in 1966 by Dover Publications. A Russian-language edition, Комбинаторная геометрия плоскости, translated by I. M. Jaglom and including a summary of the new material by Klee, was published by Nauka in 1965. The Basic Library List Committee of the Mathematical Association of America has recommended its inclusion in undergraduate mathematics libraries.
Kirchberger's theorem is a theorem in discrete geometry, on linear separability. The two-dimensional version of the theorem states that, if a finite set of red and blue points in the Euclidean plane has the property that, for every four points, there exists a line separating the red and blue points within those four, then there exists a single line separating all the red points from all the blue points. Donald Watson phrases this result more colorfully, with a farmyard analogy:
If sheep and goats are grazing in a field and for every four animals there exists a line separating the sheep from the goats then there exists such a line for all the animals.