Rank of a group

Last updated
For the dimension of the Cartan subgroup, see Rank of a Lie group

In the mathematical subject of group theory, the rank of a groupG, denoted rank(G), can refer to the smallest cardinality of a generating set for G, that is

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Group theory branch of mathematics that studies the algebraic properties of groups

In mathematics and abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

In mathematics, the cardinality of a set is a measure of the "number of elements of the set". For example, the set contains 3 elements, and therefore has a cardinality of 3. There are two approaches to cardinality – one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible.

Contents

If G is a finitely generated group, then the rank of G is a nonnegative integer. The notion of rank of a group is a group-theoretic analog of the notion of dimension of a vector space. Indeed, for p-groups, the rank of the group P is the dimension of the vector space P/Φ(P), where Φ(P) is the Frattini subgroup.

Finitely generated group group G that has some finite generating set S so that every element of G can be written as the product of finitely many elements of the finite set S and of inverses of such element

In algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination of finitely many elements of the finite set S and of inverses of such elements.

<i>p</i>-group

In mathematical group theory, given a prime number p, a p-group is a group in which each element has a power of p as its order. That is, for each element g of a p-group, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.

Frattini subgroup intersection of all maximal proper subgroups

In mathematics, the Frattini subgroup Φ(G) of a group G is the intersection of all maximal subgroups of G. For the case that G has no maximal subgroups, for example the trivial group e or the Prüfer group, it is defined by Φ(G) = G. It is analogous to the Jacobson radical in the theory of rings, and intuitively can be thought of as the subgroup of "small elements". It is named after Giovanni Frattini, who defined the concept in a paper published in 1885.

The rank of a group is also often defined in such a way as to ensure subgroups have rank less than or equal to the whole group, which is automatically the case for dimensions of vector spaces, but not for groups such as affine groups. To distinguish these different definitions, one sometimes calls this rank the subgroup rank. Explicitly, the subgroup rank of a group G is the maximum of the ranks of its subgroups:

In mathematics, the affine group or general affine group of any affine space over a field K is the group of all invertible affine transformations from the space into itself.

Sometimes the subgroup rank is restricted to abelian subgroups.

Known facts and examples

Cyclic group mathematical group that can be generated as the set of powers of a single element

In group theory, a branch of abstract algebra, a cyclic group or monogenous group is a group that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as a power of g in multiplicative notation, or as a multiple of g in additive notation. This element g is called a generator of the group.

Empty set set containing no elements

In mathematics, and more specifically set theory, the empty set is the unique set having no elements; its size or cardinality is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set; in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set.

In abstract algebra, a free abelian group or free Z-module is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis is a subset such that every element of the group can be found by adding or subtracting basis elements, and such that every element's expression as a linear combination of basis elements is unique. For instance, the integers under addition form a free abelian group with basis {1}. Addition of integers is commutative, associative, and has subtraction as its inverse operation, each integer is the sum or difference of some number of copies of the number 1, and each integer has a unique representation as an integer multiple of the number 1.

rank(L)  1  2(rank(K)  1)(rank(H)  1).
This result is due to Hanna Neumann. [3] [4] The Hanna Neumann conjecture states that in fact one always has rank(L)  1  (rank(K)  1)(rank(H)  1). The Hanna Neumann conjecture has recently been solved by Igor Mineyev [5] and announced independently by Joel Friedman. [6]

In the mathematical subject of group theory, the Grushko theorem or the Grushko-Neumann theorem is a theorem stating that the rank of a free product of two groups is equal to the sum of the ranks of the two free factors. The theorem was first obtained in a 1940 article of Grushko and then, independently, in a 1943 article of Neumann.

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group GH. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through an homomorphism from GH to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group.

rank(AB) = rank(A) + rank(B).

In algebra, a primitive element of a co-algebra C is an element x that satisfies

The rank problem

There is an algorithmic problem studied in group theory, known as the rank problem. The problem asks, for a particular class of finitely presented groups if there exists an algorithm that, given a finite presentation of a group from the class, computes the rank of that group. The rank problem is one of the harder algorithmic problems studied in group theory and relatively little is known about it. Known results include:

The rank of a finitely generated group G can be equivalently defined as the smallest cardinality of a set X such that there exists an onto homomorphism F(X) → G, where F(X) is the free group with free basis X. There is a dual notion of co-rank of a finitely generated group G defined as the largest cardinality of X such that there exists an onto homomorphism GF(X). Unlike rank, co-rank is always algorithmically computable for finitely presented groups, [14] using the algorithm of Makanin and Razborov for solving systems of equations in free groups. [15] [16] The notion of co-rank is related to the notion of a cut number for 3-manifolds. [17]

If p is a prime number, then the p-rank of G is the largest rank of an elementary abelian p-subgroup. [18] The sectionalp-rank is the largest rank of an elementary abelian p-section (quotient of a subgroup).

See also

Notes

  1. D. J. S. Robinson. A course in the theory of groups, 2nd edn, Graduate Texts in Mathematics 80 (Springer-Verlag, 1996). ISBN   0-387-94461-3
  2. Friedhelm Waldhausen. Some problems on 3-manifolds. Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, pp. 313322, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978; ISBN   0-8218-1433-8
  3. Hanna Neumann. On the intersection of finitely generated free groups. Publicationes Mathematicae Debrecen, vol. 4 (1956), 186189.
  4. Hanna Neumann. On the intersection of finitely generated free groups. Addendum. Publicationes Mathematicae Debrecen, vol. 5 (1957), p. 128
  5. Igor Minevev, "Submultiplicativity and the Hanna Neumann Conjecture." Ann. of Math., 175 (2012), no. 1, 393-414.
  6. "Sheaves on Graphs and a Proof of the Hanna Neumann Conjecture". Math.ubc.ca. Retrieved 2012-06-12.
  7. Wilhelm Magnus, Uber freie Faktorgruppen und freie Untergruppen Gegebener Gruppen, Monatshefte für Mathematik, vol. 47(1939), pp. 307313.
  8. Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Springer-Verlag, New York, 2001. "Classics in Mathematics" series, reprint of the 1977 edition. ISBN   978-3-540-41158-1; Proposition 5.11, p. 107
  9. W. W. Boone. Decision problems about algebraic and logical systems as a whole and recursively enumerable degrees of unsolvability. 1968 Contributions to Math. Logic (Colloquium, Hannover, 1966) pp. 13 33 North-Holland, Amsterdam
  10. Charles F. Miller, III. Decision problems for groups survey and reflections. Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), pp. 159, Math. Sci. Res. Inst. Publ., 23, Springer, New York, 1992; ISBN   0-387-97685-X
  11. John Lennox, and Derek J. S. Robinson. The theory of infinite soluble groups. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2004. ISBN   0-19-850728-3
  12. G. Baumslag, C. F. Miller and H. Short. Unsolvable problems about small cancellation and word hyperbolic groups. Bulletin of the London Mathematical Society, vol. 26 (1994), pp. 97101
  13. Ilya Kapovich, and Richard Weidmann. Kleinian groups and the rank problem. Geometry and Topology, vol. 9 (2005), pp. 375402
  14. John R. Stallings. Problems about free quotients of groups. Geometric group theory (Columbus, OH, 1992), pp. 165182, Ohio State Univ. Math. Res. Inst. Publ., 3, de Gruyter, Berlin, 1995. ISBN   3-11-014743-2
  15. A. A. Razborov. Systems of equations in a free group. (in Russian) Izvestia Akademii Nauk SSSR, Seriya Matematischeskaya, vol. 48 (1984), no. 4, pp. 779832.
  16. G. S.Makanin Equations in a free group. (Russian), Izvestia Akademii Nauk SSSR, Seriya Matematischeskaya, vol. 46 (1982), no. 6, pp. 11991273
  17. Shelly L. Harvey. On the cut number of a 3-manifold. Geometry & Topology, vol. 6 (2002), pp. 409424
  18. Aschbacher, M. (2002), Finite Group Theory, Cambridge University Press, p. 5, ISBN   978-0-521-78675-1

Related Research Articles

Abelian group group whose group operation is commutative

In abstract algebra, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, these are the groups that obey the axiom of commutativity. Abelian groups generalize the arithmetic of addition of integers. They are named after early 19th century mathematician Niels Henrik Abel.

Quotient group

A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves the group structure. For example, the cyclic group of addition modulo n can be obtained from the integers by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class as a single entity. It is part of the mathematical field known as group theory.

In mathematics, one method of defining a group is by a presentation. One specifies a set S of generators so that every element of the group can be written as a product of powers of some of these generators, and a set R of relations among those generators. We then say G has presentation

In mathematics, an algebraic torus is a type of commutative affine algebraic group. These groups were named by analogy with the theory of tori in Lie group theory.

In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov, characterizes finitely generated groups of polynomial growth, as those groups which have nilpotent subgroups of finite index.

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group . These concepts are named after the mathematician J. H. C. Whitehead.

In mathematics, a group is supersolvable if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability.

In mathematics, in the realm of group theory, a countable group is said to be SQ-universal if every countable group can be embedded in one of its quotient groups. SQ-universality can be thought of as a measure of largeness or complexity of a group.

Lattice (discrete subgroup) discrete subgroup in a locally compact topological group

In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.

Bass–Serre theory is a part of the mathematical subject of group theory that deals with analyzing the algebraic structure of groups acting by automorphisms on simplicial trees. The theory relates group actions on trees with decomposing groups as iterated applications of the operations of free product with amalgamation and HNN extension, via the notion of the fundamental group of a graph of groups. Bass–Serre theory can be regarded as one-dimensional version of the orbifold theory.

John R. Stallings American mathematician

John Robert Stallings Jr. was a mathematician known for his seminal contributions to geometric group theory and 3-manifold topology. Stallings was a Professor Emeritus in the Department of Mathematics at the University of California at Berkeley where he had been a faculty member since 1967. He published over 50 papers, predominantly in the areas of geometric group theory and the topology of 3-manifolds. Stallings' most important contributions include a proof, in a 1960 paper, of the Poincaré Conjecture in dimensions greater than six and a proof, in a 1971 paper, of the Stallings theorem about ends of groups.

In the mathematical subject of group theory, the Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev.

In mathematics, the concept of a relatively hyperbolic group is an important generalization of the geometric group theory concept of a hyperbolic group. The motivating examples of relatively hyperbolic groups are the fundamental groups of complete noncompact hyperbolic manifolds of finite volume.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.

In the mathematical subject of group theory, the Howson property, also known as the finitely generated intersection property (FGIP), is the property of a group saying that the intersection of any two finitely generated subgroups of this group is again finitely generated. The property is named after Albert G. Howson who in a 1954 paper established that free groups have this property.