Rank of a group

Last updated

In the mathematical subject of group theory, the rank of a groupG, denoted rank(G), can refer to the smallest cardinality of a generating set for G, that is

Contents

If G is a finitely generated group, then the rank of G is a nonnegative integer. The notion of rank of a group is a group-theoretic analog of the notion of dimension of a vector space. Indeed, for p-groups, the rank of the group P is the dimension of the vector space P/Φ(P), where Φ(P) is the Frattini subgroup.

The rank of a group is also often defined in such a way as to ensure subgroups have rank less than or equal to the whole group, which is automatically the case for dimensions of vector spaces, but not for groups such as affine groups. To distinguish these different definitions, one sometimes calls this rank the subgroup rank. Explicitly, the subgroup rank of a group G is the maximum of the ranks of its subgroups:

Sometimes the subgroup rank is restricted to abelian subgroups.

Known facts and examples

rank(L)  1  2(rank(K)  1)(rank(H)  1).
This result is due to Hanna Neumann. [3] [4] The Hanna Neumann conjecture states that in fact one always has rank(L)  1  (rank(K)  1)(rank(H)  1). The Hanna Neumann conjecture has recently been solved by Igor Mineyev [5] and announced independently by Joel Friedman. [6]
rank(AB) = rank(A) + rank(B).

The rank problem

There is an algorithmic problem studied in group theory, known as the rank problem. The problem asks, for a particular class of finitely presented groups if there exists an algorithm that, given a finite presentation of a group from the class, computes the rank of that group. The rank problem is one of the harder algorithmic problems studied in group theory and relatively little is known about it. Known results include:

The rank of a finitely generated group G can be equivalently defined as the smallest cardinality of a set X such that there exists an onto homomorphism F(X) → G, where F(X) is the free group with free basis X. There is a dual notion of co-rank of a finitely generated group G defined as the largest cardinality of X such that there exists an onto homomorphism GF(X). Unlike rank, co-rank is always algorithmically computable for finitely presented groups, [14] using the algorithm of Makanin and Razborov for solving systems of equations in free groups. [15] [16] The notion of co-rank is related to the notion of a cut number for 3-manifolds. [17]

If p is a prime number, then the p-rank of G is the largest rank of an elementary abelian p-subgroup. [18] The sectionalp-rank is the largest rank of an elementary abelian p-section (quotient of a subgroup).

See also

Notes

  1. D. J. S. Robinson. A course in the theory of groups, 2nd edn, Graduate Texts in Mathematics 80 (Springer-Verlag, 1996). ISBN   0-387-94461-3
  2. Friedhelm Waldhausen. Some problems on 3-manifolds. Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, pp. 313322, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978; ISBN   0-8218-1433-8
  3. Hanna Neumann. On the intersection of finitely generated free groups. Publicationes Mathematicae Debrecen, vol. 4 (1956), 186189.
  4. Hanna Neumann. On the intersection of finitely generated free groups. Addendum. Publicationes Mathematicae Debrecen, vol. 5 (1957), p. 128
  5. Igor Minevev, "Submultiplicativity and the Hanna Neumann Conjecture." Ann. of Math., 175 (2012), no. 1, 393–414.
  6. "Sheaves on Graphs and a Proof of the Hanna Neumann Conjecture". Math.ubc.ca. Retrieved 2012-06-12.
  7. Wilhelm Magnus, Uber freie Faktorgruppen und freie Untergruppen Gegebener Gruppen, Monatshefte für Mathematik, vol. 47(1939), pp. 307313.
  8. Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Springer-Verlag, New York, 2001. "Classics in Mathematics" series, reprint of the 1977 edition. ISBN   978-3-540-41158-1; Proposition 5.11, p. 107
  9. W. W. Boone. Decision problems about algebraic and logical systems as a whole and recursively enumerable degrees of unsolvability. 1968 Contributions to Math. Logic (Colloquium, Hannover, 1966) pp. 13 33 North-Holland, Amsterdam
  10. Charles F. Miller, III. Decision problems for groups survey and reflections. Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), pp. 159, Math. Sci. Res. Inst. Publ., 23, Springer, New York, 1992; ISBN   0-387-97685-X
  11. John Lennox, and Derek J. S. Robinson. The theory of infinite soluble groups. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2004. ISBN   0-19-850728-3
  12. G. Baumslag, C. F. Miller and H. Short. Unsolvable problems about small cancellation and word hyperbolic groups. Bulletin of the London Mathematical Society, vol. 26 (1994), pp. 97101
  13. Ilya Kapovich, and Richard Weidmann. Kleinian groups and the rank problem. Geometry and Topology, vol. 9 (2005), pp. 375402
  14. John R. Stallings. Problems about free quotients of groups. Geometric group theory (Columbus, OH, 1992), pp. 165182, Ohio State Univ. Math. Res. Inst. Publ., 3, de Gruyter, Berlin, 1995. ISBN   3-11-014743-2
  15. A. A. Razborov. Systems of equations in a free group. (in Russian) Izvestia Akademii Nauk SSSR, Seriya Matematischeskaya, vol. 48 (1984), no. 4, pp. 779832.
  16. G. S.Makanin Equations in a free group. (Russian), Izvestia Akademii Nauk SSSR, Seriya Matematischeskaya, vol. 46 (1982), no. 6, pp. 11991273
  17. Shelly L. Harvey. On the cut number of a 3-manifold. Geometry & Topology, vol. 6 (2002), pp. 409424
  18. Aschbacher, M. (2002), Finite Group Theory, Cambridge University Press, p. 5, ISBN   978-0-521-78675-1

Related Research Articles

Abelian group Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

Lie group Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract, generic concept of multiplication and the taking of inverses (division). Combining these two ideas, one obtains a continuous group where points can be multiplied together, and their inverse can be taken. If, in addition, the multiplication and taking of inverses are defined to be smooth (differentiable), one obtains a Lie group.

Group (mathematics) Algebraic structure with one binary operation

In mathematics, a group is a set equipped with an operation that combines any two elements to form a third element while being associative as well as having an identity element and inverse elements. These three conditions, called group axioms, hold for number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The formulation of the axioms is, however, detached from the concrete nature of the group and its operation. This allows one to handle entities of very different mathematical origins in a flexible way, while retaining essential structural aspects of many objects in abstract algebra and beyond. The ubiquity of groups in numerous areas—both within and outside mathematics—makes them a central organizing principle of contemporary mathematics.

Free group

In mathematics, the free groupFS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms. The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses.

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free -modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group GH. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from GH to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group.

Frattini subgroup

In mathematics, particularly in group theory, the Frattini subgroup of a group G is the intersection of all maximal subgroups of G. For the case that G has no maximal subgroups, for example the trivial group {e} or the Prüfer group, it is defined by . It is analogous to the Jacobson radical in the theory of rings, and intuitively can be thought of as the subgroup of "small elements". It is named after Giovanni Frattini, who defined the concept in a paper published in 1885.

In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov, characterizes finitely generated groups of polynomial growth, as those groups which have nilpotent subgroups of finite index.

In mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive measure on subsets of G, was introduced by John von Neumann in 1929 under the German name "messbar" in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "mean".

Finitely generated group

In algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination of finitely many elements of the finite set S and of inverses of such elements.

In mathematics, in the realm of group theory, a countable group is said to be SQ-universal if every countable group can be embedded in one of its quotient groups. SQ-universality can be thought of as a measure of largeness or complexity of a group.

Lattice (discrete subgroup)

In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.

Bass–Serre theory is a part of the mathematical subject of group theory that deals with analyzing the algebraic structure of groups acting by automorphisms on simplicial trees. The theory relates group actions on trees with decomposing groups as iterated applications of the operations of free product with amalgamation and HNN extension, via the notion of the fundamental group of a graph of groups. Bass–Serre theory can be regarded as one-dimensional version of the orbifold theory.

In the mathematical subject of group theory, the Grushko theorem or the Grushko–Neumann theorem is a theorem stating that the rank of a free product of two groups is equal to the sum of the ranks of the two free factors. The theorem was first obtained in a 1940 article of Grushko and then, independently, in a 1943 article of Neumann.

John R. Stallings American mathematician

John Robert Stallings Jr. was a mathematician known for his seminal contributions to geometric group theory and 3-manifold topology. Stallings was a Professor Emeritus in the Department of Mathematics at the University of California at Berkeley where he had been a faculty member since 1967. He published over 50 papers, predominantly in the areas of geometric group theory and the topology of 3-manifolds. Stallings' most important contributions include a proof, in a 1960 paper, of the Poincaré Conjecture in dimensions greater than six and a proof, in a 1971 paper, of the Stallings theorem about ends of groups.

In the mathematical subject of group theory, the Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev.

In the mathematical subject of geometric group theory, a Dehn function, named after Max Dehn, is an optimal function associated to a finite group presentation which bounds the area of a relation in that group in terms of the length of that relation. The growth type of the Dehn function is a quasi-isometry invariant of a finitely presented group. The Dehn function of a finitely presented group is also closely connected with non-deterministic algorithmic complexity of the word problem in groups. In particular, a finitely presented group has solvable word problem if and only if the Dehn function for a finite presentation of this group is recursive. The notion of a Dehn function is motivated by isoperimetric problems in geometry, such as the classic isoperimetric inequality for the Euclidean plane and, more generally, the notion of a filling area function that estimates the area of a minimal surface in a Riemannian manifold in terms of the length of the boundary curve of that surface.

In mathematics, the concept of a relatively hyperbolic group is an important generalization of the geometric group theory concept of a hyperbolic group. The motivating examples of relatively hyperbolic groups are the fundamental groups of complete noncompact hyperbolic manifolds of finite volume.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.