Rattleback

Last updated
A rattleback in action

A rattleback is a semi-ellipsoidal top which will rotate on its axis in a preferred direction. If spun in the opposite direction, it becomes unstable, "rattles" to a stop and reverses its spin to the preferred direction.

Contents

This spin-reversal appears to violate the law of the conservation of angular momentum.[ citation needed ] Moreover, for most rattlebacks the motion will happen when the rattleback is spun in one direction, but not when spun in the other. Some exceptional rattlebacks will reverse when spun in either direction. [1] This makes the rattleback a physical curiosity that has excited human imagination since prehistoric times. [2]

A rattleback may also be known as a "anagyre", "(rebellious) celt", "Celtic stone", "druid stone", "rattlerock", "Robinson Reverser", "spin bar", "wobble stone" (or "wobblestone") and by product names including "ARK", "Bizzaro Swirl", "Space Pet" and "Space Toy".

History

Large rattleback made from different wood densities RATTLEBACK - ANAGYRE -(GAEL 24 inches) - Emmanuel Peluchon.jpg
Large rattleback made from different wood densities

Archeologists who investigated ancient Celtic and Egyptian sites in the 19th century found celts which exhibited the spin-reversal motion.[ citation needed ] The antiquarian word celt (the "c" is soft, pronounced as "s") describes lithic tools and weapons shaped like an adze, axe, chisel, or hoe.

The first modern descriptions of these celts were published in the 1890s when Gilbert Walker wrote his "On a curious dynamical property of celts" for the Proceedings of the Cambridge Philosophical Society in Cambridge, England, and "On a dynamical top" for the Quarterly Journal of Pure and Applied Mathematics in Somerville, Massachusetts, US.

Additional examinations of rattlebacks were published in 1909 and 1918, and by the 1950s and 1970s, several more examinations were made. But, the popular fascination with the objects has increased notably since the 1980s when no fewer than 28 examinations were published.

Size and materials

Carved wooden rattleback Celt with weights of gemstone turtles-01.jpg
Carved wooden rattleback

Rattleback artifacts are typically stone and come in various sizes. Modern ones sold as novelty puzzles and toys are generally made of plastic, wood, or glass, and come in sizes from a few inches up to 12 inches (300 mm) long. A rattleback can also be made by bending a spoon. [3] Two rattleback design types exist: they have either an asymmetrical base with a skewed rolling axis, or a symmetrical base with offset weighting at the ends.

Physics

Rolling and pitching motions Rolling-pitching.png
Rolling and pitching motions

The spin-reversal motion follows from the growth of instabilities on the other rotation axes, that are rolling (on the main axis) and pitching (on the crosswise axis). [4]

Rattleback made with spoon exhibiting multiple spin reversals.

When there is an asymmetry in the mass distribution with respect to the plane formed by the pitching and the vertical axes, a coupling of these two instabilities arises; one can imagine how the asymmetry in mass will deviate the rattleback when pitching, which will create some rolling.

The amplified mode will differ depending on the spin direction, which explains the rattleback's asymmetrical behavior. Depending on whether it is rather a pitching or rolling instability that dominates, the growth rate will be very high or quite low.

This explains why, due to friction, most rattlebacks appear to exhibit spin-reversal motion only when spun in the pitching-unstable direction, also known as the strong reversal direction. When the rattleback is spun in the "stable direction", also known as the weak reversal direction, friction and damping often slow the rattleback to a stop before the rolling instability has time to fully build. Some rattlebacks, however, exhibit "unstable behavior" when spun in either direction, and incur several successive spin reversals per spin. [5]

Other ways to add motion to a rattleback include tapping by pressing down momentarily on either of its ends, and rocking by pressing down repeatedly on either of its ends.

For a comprehensive analysis of rattleback's motion, see V.Ph. Zhuravlev and D.M. Klimov (2008). [6] The previous papers were based on simplified assumptions and limited to studying local instability of its steady-state oscillation.

Realistic mathematical modelling of a rattleback is presented by G. Kudra and J. Awrejcewicz (2015). [7] They focused on modelling of the contact forces and tested different versions of models of friction and rolling resistance, obtaining good agreement with the experimental results.

Numerical simulations predict that a rattleback situated on a harmonically oscillating base can exhibit rich bifurcation dynamics, including different types of periodic, quasi-periodic and chaotic motions. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Nutation</span> Wobble of the axis of rotation

Nutation is a rocking, swaying, or nodding motion in the axis of rotation of a largely axially symmetric object, such as a gyroscope, planet, or bullet in flight, or as an intended behaviour of a mechanism. In an appropriate reference frame it can be defined as a change in the second Euler angle. If it is not caused by forces external to the body, it is called free nutation or Euler nutation. A pure nutation is a movement of a rotational axis such that the first Euler angle is constant. Therefore it can be seen that the circular red arrow in the diagram indicates the combined effects of precession and nutation, while nutation in the absence of precession would only change the tilt from vertical. However, in spacecraft dynamics, precession is sometimes referred to as nutation.

<span class="mw-page-title-main">Precession</span> Periodic change in the direction of a rotation axis

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

<span class="mw-page-title-main">Rotation</span> Movement of an object around an axis

Rotation or rotational motion is the circular movement of an object around a central line, known as axis of rotation. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation. A solid figure has an infinite number of possible axes and angles of rotation, including chaotic rotation, in contrast to rotation around a fixed axis.

<span class="mw-page-title-main">Gyroscope</span> Device for measuring or maintaining the orientation and angular velocity

A gyroscope is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.

<span class="mw-page-title-main">Aeroelasticity</span> Interactions among inertial, elastic, and aerodynamic forces

Aeroelasticity is the branch of physics and engineering studying the interactions between the inertial, elastic, and aerodynamic forces occurring while an elastic body is exposed to a fluid flow. The study of aeroelasticity may be broadly classified into two fields: static aeroelasticity dealing with the static or steady state response of an elastic body to a fluid flow, and dynamic aeroelasticity dealing with the body's dynamic response.

<span class="mw-page-title-main">Gear</span> Rotating circular machine part with teeth that mesh with another toothed part

A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth, which mesh with another (compatible) toothed part to transmit rotational power. While doing so, they can change the torque and rotational speed being transmitted and also change the rotational axis of the power being transmitted. The teeth on the two meshing gears all have the same shape.

<span class="mw-page-title-main">Vortex</span> Fluid flow revolving around an axis of rotation

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

<span class="mw-page-title-main">Top</span> Spinning toy

A spinning top, or simply a top, is a toy with a squat body and a sharp point at the bottom, designed to be spun on its vertical axis, balancing on the tip due to the gyroscopic effect.

<span class="mw-page-title-main">Euler's Disk</span> Scientific educational toy

Euler's Disk, invented between 1987 and 1990 by Joseph Bendik, is a trademarked scientific educational toy. It is used to illustrate and study the dynamic system of a spinning and rolling disk on a flat or curved surface. It has been the subject of several scientific papers.

<span class="mw-page-title-main">Aerobatic maneuver</span> Flight path putting aircraft in unusual attitudes

Aerobatic maneuvers are flight paths putting aircraft in unusual attitudes, in air shows, dogfights or competition aerobatics. Aerobatics can be performed by a single aircraft or in formation with several others. Nearly all aircraft are capable of performing aerobatics maneuvers of some kind, although it may not be legal or safe to do so in certain aircraft.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.

<span class="mw-page-title-main">Gyro monorail</span> Single rail land vehicle

The gyro monorail, gyroscopic monorail, gyro-stabilized monorail, or gyrocar are terms for a single rail land vehicle that uses the gyroscopic action of a spinning wheel to overcome the inherent instability of balancing on top of a single rail.

<span class="mw-page-title-main">Bicycle and motorcycle dynamics</span> Science behind the motion of bicycles and motorcycles

Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.

<span class="mw-page-title-main">Stability derivatives</span>

Stability derivatives, and also control derivatives, are measures of how particular forces and moments on an aircraft change as other parameters related to stability change. For a defined "trim" flight condition, changes and oscillations occur in these parameters. Equations of motion are used to analyze these changes and oscillations. Stability and control derivatives are used to linearize (simplify) these equations of motion so the stability of the vehicle can be more readily analyzed.

<span class="mw-page-title-main">Aircraft principal axes</span> Principal directions in aviation

An aircraft in flight is free to rotate in three dimensions: yaw, nose left or right about an axis running up and down; pitch, nose up or down about an axis running from wing to wing; and roll, rotation about an axis running from nose to tail. The axes are alternatively designated as vertical, lateral, and longitudinal respectively. These axes move with the vehicle and rotate relative to the Earth along with the craft. These definitions were analogously applied to spacecraft when the first crewed spacecraft were designed in the late 1950s.

<span class="mw-page-title-main">Tippe top</span> Spinning physics toy

A tippe top is a kind of top that when spun, will spontaneously invert itself to spin on its narrow stem. It was invented by a German nurse, Helene Sperl in 1898.

<span class="mw-page-title-main">Gyroscopic exercise tool</span>

A Gyroscopic Exercise Tool is a specialized device used in physical therapy to improve wrist strength, promoting the development of palm, forearm, and finger muscles. It can also be used as a unique demonstration of some aspects of rotational dynamics. The device consists of a tennis ball-sized plastic or metal shell surrounding a free-spinning mass, with an inner heavy core, which can be spun by a short rip string. Once the gyroscope inside is going fast enough, the person holding the device can accelerate the spinning mass to high rotation rates by moving the wrist in a circular motion. The force enacted on the user increases as the speed of the inner gyroscope increases.

Spacecraft attitude control is the process of controlling the orientation of a spacecraft with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.

Gun dynamics encompasses aspects of gun technology, such as recoil and impact. In the 1970s, the United States Army Symposium on Gun Dynamics defined it as the study of internal ballistics that are unrelated to propellants and combustion. In particular, it is concerned with the interactive dynamics between the projectile, barrel, and mounting, and the effect that they have on the accuracy and consistency of the gun.

References

  1. "Introduction to Hugh's Talk". Millennium Mathematics Project. University of Cambridge. Archived from the original on 2004-03-06. Retrieved 2013-10-19.
  2. "celt, n.2". OED Online. September 2012. Oxford University Press. 1 October 2012 <http://www.oed.com/view/Entry/29533?isAdvanced=false&result=2&rskey=EPfrjA&>
  3. "Technoramalecture".
  4. "Keith Moffatt, Cambridge Univ. & KITP, Rattleback Reversals: A Prototype of Chiral Dynamics".
  5. Garcia, A.; Hubbard, M. (8 July 1988). "Spin Reversal of the Rattleback: Theory and Experiment". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 418 (1854): 165–197. Bibcode:1988RSPSA.418..165G. doi:10.1098/rspa.1988.0078. S2CID   122747632.
  6. V.Ph. Zhuravlev and D.M. Klimov, Global motion of the celt, Mechanics of Solids, 2008, Vol. 43, No. 3, pp. 320-327.
  7. Kudra, Grzegorz; Awrejcewicz, Jan (September 1, 2015). "Application and experimental validation of new computational models of friction forces and rolling resistance". Acta Mechanica. 226 (9): 2831–2848. doi: 10.1007/s00707-015-1353-z . S2CID   122992413.
  8. J. Awrejcewicz, G. Kudra, Mathematical modelling and simulation of the bifurcational wobblestone dynamics, Discontinuity, Nonlinearity and Complexity, 3(2), 2014, 123-132.