Reeb stability theorem

Last updated

In mathematics, Reeb stability theorem, named after Georges Reeb, asserts that if one leaf of a codimension-one foliation is closed and has finite fundamental group, then all the leaves are closed and have finite fundamental group.

Contents

Reeb local stability theorem

Theorem: [1] Let be a , codimension foliation of a manifold and a compact leaf with finite holonomy group. There exists a neighborhood of , saturated in (also called invariant), in which all the leaves are compact with finite holonomy groups. Further, we can define a retraction such that, for every leaf , is a covering map with a finite number of sheets and, for each , is homeomorphic to a disk of dimension k and is transverse to . The neighborhood can be taken to be arbitrarily small.

The last statement means in particular that, in a neighborhood of the point corresponding to a compact leaf with finite holonomy, the space of leaves is Hausdorff. Under certain conditions the Reeb local stability theorem may replace the Poincaré–Bendixson theorem in higher dimensions. [2] This is the case of codimension one, singular foliations , with , and some center-type singularity in .

The Reeb local stability theorem also has a version for a noncompact codimension-1 leaf. [3] [4]

Reeb global stability theorem

An important problem in foliation theory is the study of the influence exerted by a compact leaf upon the global structure of a foliation. For certain classes of foliations, this influence is considerable.

Theorem: [1] Let be a , codimension one foliation of a closed manifold . If contains a compact leaf with finite fundamental group, then all the leaves of are compact, with finite fundamental group. If is transversely orientable, then every leaf of is diffeomorphic to ; is the total space of a fibration over , with fibre , and is the fibre foliation, .

This theorem holds true even when is a foliation of a manifold with boundary, which is, a priori, tangent on certain components of the boundary and transverse on other components. [5] In this case it implies Reeb sphere theorem.

Reeb Global Stability Theorem is false for foliations of codimension greater than one. [6] However, for some special kinds of foliations one has the following global stability results:

Theorem: [7] Let be a complete conformal foliation of codimension of a connected manifold . If has a compact leaf with finite holonomy group, then all the leaves of are compact with finite holonomy group.

Theorem: [8] Let be a holomorphic foliation of codimension in a compact complex Kähler manifold. If has a compact leaf with finite holonomy group then every leaf of is compact with finite holonomy group.

Related Research Articles

Complex geometry Study of complex manifolds and several complex variables

In mathematics, complex geometry is the study of complex manifolds, complex algebraic varieties, and functions of several complex variables. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

Calabi–Yau manifold Riemannian manifold with SU(n) holonomy

In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by Candelas et al. (1985), after Eugenio Calabi who first conjectured that such surfaces might exist, and Shing-Tung Yau (1978) who proved the Calabi conjecture.

Foliation In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil.

In mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an underdetermined system of first-order homogeneous linear partial differential equations. In modern geometric terms, given a family of vector fields, the theorem gives necessary and sufficient integrability conditions for the existence of a foliation by maximal integral manifolds whose tangent bundles are spanned by the given vector fields. The theorem generalizes the existence theorem for ordinary differential equations, which guarantees that a single vector field always gives rise to integral curves; Frobenius gives compatibility conditions under which the integral curves of r vector fields mesh into coordinate grids on r-dimensional integral manifolds. The theorem is foundational in differential topology and calculus on manifolds.

Holonomy Concept in differential geometry

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

In differential geometry, a hyperkähler manifold is a Riemannian manifold of dimension and holonomy group contained in Sp(k). Hyperkähler manifolds are special classes of Kähler manifolds. They can be thought of as quaternionic analogues of Kähler manifolds. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds.

In differential geometry, a Poisson structure on a smooth manifold is a Lie bracket on the algebra of smooth functions on , subject to the Leibniz rule

Myers's theorem, also known as the Bonnet–Myers theorem, is a celebrated, fundamental theorem in the mathematical field of Riemannian geometry. It was discovered by Sumner Byron Myers in 1941. It asserts the following:

3-manifold A space that locally looks like Euclidean 3-dimensional space

In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

In mathematics, a taut foliation is a codimension 1 foliation of a 3-manifold with the property that there is a single transverse circle intersecting every leaf. By transverse circle, is meant a closed loop that is always transverse to the tangent field of the foliation. Equivalently, by a result of Dennis Sullivan, a codimension 1 foliation is taut if there exists a Riemannian metric that makes each leaf a minimal surface.

In differential geometry, a quaternion-Kähler manifold is a Riemannian 4n-manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1) for some . Here Sp(n) is the sub-group of consisting of those orthogonal transformations that arise by left-multiplication by some quaternionic matrix, while the group of unit-length quaternions instead acts on quaternionic -space by right scalar multiplication. The Lie group generated by combining these actions is then abstractly isomorphic to .

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of intersection.

In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.

Georges Reeb

Georges Henri Reeb was a French mathematician. He worked in differential topology, differential geometry, differential equations, topological dynamical systems theory and non-standard analysis.

In mathematics, Novikov's compact leaf theorem, named after Sergei Novikov, states that

In mathematics, Reeb sphere theorem, named after Georges Reeb, states that

In mathematics the Thurston boundary of Teichmüller space of a surface is obtained as the boundary of its closure in the projective space of functionals on simple closed curves on the surface. It can be interpreted as the space of projective measured foliations on the surface.

In gravitation theory, a world manifold endowed with some Lorentzian pseudo-Riemannian metric and an associated space-time structure is a space-time. Gravitation theory is formulated as classical field theory on natural bundles over a world manifold.

References

Notes

  1. 1 2 G. Reeb (1952). Sur certaines propriétés toplogiques des variétés feuillétées. Actualités Sci. Indust. 1183. Paris: Hermann.
  2. J. Palis, jr., W. de Melo, Geometric theory of dynamical systems: an introduction, — New-York, Springer,1982.
  3. T.Inaba, Reeb stability of noncompact leaves of foliations,— Proc. Japan Acad. Ser. A Math. Sci., 59:158{160, 1983
  4. J. Cantwell and L. Conlon, Reeb stability for noncompact leaves in foliated 3-manifolds, — Proc. Amer.Math.Soc. 33 (1981), no. 2, 408–410.
  5. C. Godbillon, Feuilletages, etudies geometriques, — Basel, Birkhauser, 1991
  6. W.T.Wu and G.Reeb, Sur les éspaces fibres et les variétés feuillitées, — Hermann, 1952.
  7. R.A. Blumenthal, Stability theorems for conformal foliations, — Proc. AMS. 91, 1984, p. 5563.
  8. J.V. Pereira, Global stability for holomorphic foliations on Kaehler manifolds, — Qual. Theory Dyn. Syst. 2 (2001), 381384. arXiv : math/0002086v2