Robert Carpick

Last updated
Robert W. Carpick
Robert Carpick.jpg
Rob Carpick at the 2022 Tribology GRC (Lewiston, Maine)
Citizenship Canadian
Alma mater
Known for
Important discoveries in the field of nanotribology using AFM.
Awards
Scientific career
Fields Physics, mechanical engineering, materials science
Institutions
Doctoral advisor Miquel Salmeron

Robert William Carpick is a Canadian mechanical engineer. He is currently director of diversity, equity, and inclusion and John Henry Towne Professor in the Department of Mechanical Engineering and Applied Mechanics at the University of Pennsylvania. [1] He is best known for his work in tribology, particularly nanotribology.

Contents

Education

Carpick received his bachelor's degree in physics from the University of Toronto in 1991, and his master's degree and Doctor of Philosophy in physics from the University of California, Berkeley, in 1997. [1] His thesis was entitled "The Study of Contact, Adhesion and Friction at the Atomic Scale by Atomic Force Microscopy". [2] His PhD supervisor was Miquel Salmeron, who pioneered the use of Atomic Force Microscopy (AFM) in tribology. [3] During his PhD, Carpick devised a method to obtain reproducible and quantitative friction measurements using AFM. [4]

Research career

After his PhD, he spent two years as a postdoctoral appointee at Sandia National Laboratory in the Surface and Interface Science Department, and then the Biomolecular Materials and Interfaces Department, where he worked under the supervision of Dr Alan R. Burns. [1] In 2000, he joined the faculty at the University of Wisconsin-Madison in the Engineering Physics Department. Carpick moved to the University of Pennsylvania in January 2007. [1]

He has made a number of important discoveries in the field of nanotribology using AFM. These include that the friction of lamellar 2D-materials (e.g. graphene, molybdenum disulfide, niobium diselenide, and hexagonal boron nitride) increases as the number of layers decreases. [5] [6] He has shown that frictional ageing of the contacts between rock surfaces arises from the formation of interfacial chemical bonds. [7] He found that the wear of AFM tips cannot be adequately described by macroscale models and instead is driven by nanoscale mechanochemical processes. [6] His group has also given important insights into the mechochemical tribofilm formation of the lubricant antiwear additive zinc dialkyldithiophosphate (ZDDP). [8] According to Google Scholar, as of 2021, his work had been cited on over 16,000 occasions. [9]

Honours and awards

Carpick was named a Fellow of the American Physical Society in 2012, a Fellow of the American Vacuum Society in 2014, a Fellow of the Society of Tribologists and Lubrication Engineers in 2016, a Fellow of the Materials Research Society in 2017, and a Fellow of the American Society of Mechanical Engineers (ASME) in 2019. [1] He received a National Science Foundation CAREER Award in 2001, and was named Outstanding New Mechanics Educator by the American Society for Engineering Education in 2003. [1] In 2009, he was awarded the ASME Burt L. Newkirk Award. [10]

Personal life

Carpick has been married to his partner since 2003. He is also a fan and practitioner of curling and the organ. [11]

Related Research Articles

<span class="mw-page-title-main">Surface science</span> Study of physical and chemical phenomena that occur at the interface of two phases

Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces. It includes the fields of surface chemistry and surface physics. Some related practical applications are classed as surface engineering. The science encompasses concepts such as heterogeneous catalysis, semiconductor device fabrication, fuel cells, self-assembled monolayers, and adhesives. Surface science is closely related to interface and colloid science. Interfacial chemistry and physics are common subjects for both. The methods are different. In addition, interface and colloid science studies macroscopic phenomena that occur in heterogeneous systems due to peculiarities of interfaces.

<span class="mw-page-title-main">Atomic force microscopy</span> Type of microscopy

Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit.

Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging surfaces at the atomic level. The first successful scanning tunneling microscope experiment was done by Gerd Binnig and Heinrich Rohrer. The key to their success was using a feedback loop to regulate gap distance between the sample and the probe.

Nanotribology is the branch of tribology that studies friction, wear, adhesion and lubrication phenomena at the nanoscale, where atomic interactions and quantum effects are not negligible. The aim of this discipline is characterizing and modifying surfaces for both scientific and technological purposes.

<span class="mw-page-title-main">Zinc dithiophosphate</span> Lubricant additive

Zinc dialkyldithiophosphates are a family of coordination compounds developed in the 1940s that feature zinc bound to the anion of a dialkyldithiophosphoric salt. These uncharged compounds are not salts. They are soluble in nonpolar solvents, and the longer-chain derivatives easily dissolve in mineral and synthetic oils used as lubricants. They come under CAS number 68649-42-3. In aftermarket oil additives, the percentage of ZDDP ranges approximately between 2 and 15%. Zinc dithiophosphates have many names, including ZDDP, ZnDTP, and ZDP.

<span class="mw-page-title-main">Stick–slip phenomenon</span>

The stick–slip phenomenon, also known as the slip–stick phenomenon or simply stick–slip, is a type of motion exhibited by objects in contact sliding over one another. The motion of these objects is usually not perfectly smooth, but rather irregular, with brief accelerations (slips) interrupted by stops (sticks). Stick–slip motion is normally connected to friction, and may generate vibration (noise) or be associated with mechanical wear of the moving objects, and is thus often undesirable in mechanical devices. On the other hand, stick–slip motion can be useful in some situations, such as the movement of a bow across a string to create musical tones in a bowed string instrument.

<span class="mw-page-title-main">Conductive atomic force microscopy</span> Method of measuring the microscopic topography of a material

In microscopy, conductive atomic force microscopy (C-AFM) or current sensing atomic force microscopy (CS-AFM) is a mode in atomic force microscopy (AFM) that simultaneously measures the topography of a material and the electric current flow at the contact point of the tip with the surface of the sample. The topography is measured by detecting the deflection of the cantilever using an optical system, while the current is detected using a current-to-voltage preamplifier. The fact that the CAFM uses two different detection systems is a strong advantage compared to scanning tunneling microscopy (STM). Basically, in STM the topography picture is constructed based on the current flowing between the tip and the sample. Therefore, when a portion of a sample is scanned with an STM, it is not possible to discern if the current fluctuations are related to a change in the topography or to a change in the sample conductivity.

<span class="mw-page-title-main">Thermal scanning probe lithography</span>

Thermal scanning probe lithography (t-SPL) is a form of scanning probe lithography (SPL) whereby material is structured on the nanoscale using scanning probes, primarily through the application of thermal energy.

Jacob Nissim Israelachvili, was an Israeli physicist who was a professor at the University of California, Santa Barbara (UCSB).

<span class="mw-page-title-main">Photoconductive atomic force microscopy</span> Type of atomic force microscopy

Photoconductive atomic force microscopy (PC-AFM) is a variant of atomic force microscopy that measures photoconductivity in addition to surface forces.

Nanosensors Inc. is a company that manufactures probes for use in atomic force microscopes (AFM) and scanning probe microscopes (SPM). This private, for profit company was founded November 21, 2018. Nanosensors Inc. is located in Neuchatel, Switzerland.

<span class="mw-page-title-main">Colloidal probe technique</span>

The colloidal probe technique is commonly used to measure interaction forces acting between colloidal particles and/or planar surfaces in air or in solution. This technique relies on the use of an atomic force microscope (AFM). However, instead of a cantilever with a sharp AFM tip, one uses the colloidal probe. The colloidal probe consists of a colloidal particle of few micrometers in diameter that is attached to an AFM cantilever. The colloidal probe technique can be used in the sphere-plane or sphere-sphere geometries. One typically achieves a force resolution between 1 and 100 pN and a distance resolution between 0.5 and 2 nm.

<span class="mw-page-title-main">Franz Josef Giessibl</span> German physicist

Franz Josef Gießibl is a German physicist and university professor at the University of Regensburg.

<span class="mw-page-title-main">Infrared Nanospectroscopy (AFM-IR)</span> Infrared microscopy technique

AFM-IR or infrared nanospectroscopy is one of a family of techniques that are derived from a combination of two parent instrumental techniques. AFM-IR combines the chemical analysis power of infrared spectroscopy and the high-spatial resolution of scanning probe microscopy (SPM). The term was first used to denote a method that combined a tuneable free electron laser with an atomic force microscope equipped with a sharp probe that measured the local absorption of infrared light by a sample with nanoscale spatial resolution.

Hugh Alexander Spikes is a British mechanical engineer. He is emeritus professor of tribology at Imperial College London. He is the former head of the Tribology Group at Imperial College. Tribology is the science and engineering of friction, lubrication and wear.

Tribofilms are films that form on tribologically stressed surfaces. Tribofilms are mostly solid surface films that result from a chemical reaction of lubricant components or tribological surfaces.

<span class="mw-page-title-main">Mark O. Robbins</span> American condensed matter physicist (1955–2020)

Mark Owen Robbins was an American condensed matter physicist who specialized in computational studies of friction, fracture and adhesion, with a particular focus on nanotribology, contact mechanics, and polymers. He was a professor in the department of physics and astronomy at Johns Hopkins University at the time of his death.

Judith A. Harrison is an American physical chemist and tribologist who is known for pioneering numerical methods that incorporate chemical reactions into modeling studies. She is a professor in the Department of Chemistry at the United States Naval Academy in Annapolis, Maryland.

Bimodal Atomic Force Microscopy is an advanced atomic force microscopy technique characterized by generating high-spatial resolution maps of material properties. Topography, deformation, elastic modulus, viscosity coefficient or magnetic field maps might be generated. Bimodal AFM is based on the simultaneous excitation and detection of two eigenmodes (resonances) of a force microscope microcantilever.

<span class="mw-page-title-main">Q. Jane Wang</span> Chinese-American tribologist

Qian Jane Wang is an American professor of mechanical engineering and the Executive Director for the Center for Surface Engineering and Tribology at Northwestern University. She is a tribologist whose research includes work on contact mechanics, lubrication, micromechanics, and solid-state batteries.

References

  1. 1 2 3 4 5 6 "Robert Carpick | Carpick Research Group" . Retrieved 2021-02-03.
  2. Carpick, Robert William (1997). The study of contact, adhesion and friction at the atomic scale by atomic force microscopy (Thesis). Bibcode:1997PhDT.......370C.
  3. Carpick, Robert W.; Salmeron, Miquel (1997). "Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy". Chemical Reviews. 97 (4): 1163–1194. doi:10.1021/cr960068q. ISSN   0009-2665. PMID   11851446.
  4. Ogletree, D. F.; Carpick, R. W.; Salmeron, M. (1996). "Calibration of frictional forces in atomic force microscopy". Review of Scientific Instruments. 67 (9): 3298–3306. Bibcode:1996RScI...67.3298O. doi:10.1063/1.1147411. ISSN   0034-6748. S2CID   28625669.
  5. Lee, Changgu; Li, Qunyang; Kalb, William; Liu, Xin-Zhou; Berger, Helmuth; Carpick, Robert W.; Hone, James (2010). "Frictional Characteristics of Atomically Thin Sheets". Science. 328 (5974): 76–80. Bibcode:2010Sci...328...76L. doi:10.1126/science.1184167. ISSN   0036-8075. PMID   20360104. S2CID   24415664.
  6. 1 2 Jacobs, Tevis D. B.; Carpick, Robert W. (2013). "Nanoscale wear as a stress-assisted chemical reaction". Nature Nanotechnology. 8 (2): 108–112. Bibcode:2013NatNa...8..108J. doi:10.1038/nnano.2012.255. ISSN   1748-3395. PMID   23353678.
  7. Li, Qunyang; Tullis, Terry E.; Goldsby, David; Carpick, Robert W. (2011). "Frictional ageing from interfacial bonding and the origins of rate and state friction". Nature. 480 (7376): 233–236. Bibcode:2011Natur.480..233L. doi:10.1038/nature10589. ISSN   1476-4687. PMID   22139421. S2CID   4355698.
  8. Gosvami, N. N.; Bares, J. A.; Mangolini, F.; Konicek, A. R.; Yablon, D. G.; Carpick, R. W. (2015). "Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts". Science. 348 (6230): 102–106. Bibcode:2015Sci...348..102G. doi: 10.1126/science.1258788 . ISSN   0036-8075. PMID   25765069.
  9. "Robert W. Carpick". scholar.google.com. Retrieved 2021-02-03.
  10. "Burt L. Newkirk Award". www.asme.org. Retrieved 2021-02-03.
  11. "Rob Carpick Interview". www.alumni.upenn.edu. Retrieved 2021-10-11.