STIL

Last updated
STIL
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases STIL , MCPH7, SIL, SCL/TAL1 interrupting locus, centriolar assembly protein, STIL centriolar assembly protein
External IDs OMIM: 181590 MGI: 107477 HomoloGene: 2283 GeneCards: STIL
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_009185
NM_001304551
NM_001304553
NM_001304555
NM_001304559

Contents

RefSeq (protein)

NP_001291480
NP_001291482
NP_001291484
NP_001291488
NP_033211

Location (UCSC) Chr 1: 47.25 – 47.31 Mb Chr 4: 114.86 – 114.9 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

SCL-interrupting locus protein is a protein that in humans is encoded by the STIL gene. STIL is present in many different cell types and is essential for centriole biogenesis. This gene encodes a cytoplasmic protein implicated in regulation of the mitotic spindle checkpoint, a regulatory pathway that monitors chromosome segregation during cell division to ensure the proper distribution of chromosomes to daughter cells. The protein is phosphorylated in mitosis and in response to activation of the spindle checkpoint, and disappears when cells transition to G1 phase. It interacts with a mitotic regulator, and its expression is required to efficiently activate the spindle checkpoint.

It is proposed to regulate Cdc2 kinase activity during spindle checkpoint arrest. Chromosomal deletions that fuse this gene and the adjacent locus commonly occur in T cell leukemias, and are thought to arise through illegitimate recombination events. Multiple transcript variants encoding different isoforms have been found for this gene. Multiple types of cancer produce STIL, and its expression is linked to an increased mitotic index and cancer development. [5] Hedgehog family-mediated signaling events are one of its associated pathways. The development and function of the nervous system are impacted by STIL. [6] The sequence of STIL gene is highly conserved in vertebrate species .Both fetal and adult tissues express the STIL gene. Its expression levels fluctuate with the cell cycle, making it challenging to detect in a complete tissue, particularly if the cells are not synchronized.

Gene location

The human STIL gene is located on the (p) arm of chromosome 1. It mapped the STIL gene to chromosome 1p33 based on an alignment of the STIL sequence with the genomic sequence. STIL gene contains 20 exons, including alternatively spliced exons 13A and 13B and 18A and 18B. The coding region begins in exon 3. The human SIL gene encodes a 1287-amino acid cytosolic protein.

Functions and mechanism

Numerous cancer types are affected by STIL overexpression which has been linked to chromosomal instability. It plays a part in neural development and function. STIL plays a crucial role in cell mitosis and centriole replication. The early stages of the cell cycle see a slow increase in STIL expression, a peak in the middle, and a sharp decline in the latter stages. When cellular proliferation is inhibited by serum deprivation, contact inhibition, or the promotion of terminal differentiation, STIL is expressed in the proliferating cells and is down-regulated. STIL has been interacted with CDK1, PLK4, and SAS-6. STIL has a role in the Sonic hedgehog (Shh) pathway. STIL regulates the transcription of Shh-target gene Gli1 [7] .The suppressor-of-fused homolog (SUFU) and GLI1 are examples of conserved Shh signaling elements with which the C terminus of STIL can engage. The activation of Shh-GLI1 cascades is caused by STIL's interaction with SUFU, which prevents SUFU from acting as a repressor of GLI1.

Normally, GLI1 binds to the cytoplasmic protein SUFU to form heterodimers. The transcription of the Gli1 gene is blocked because the heterodimers cannot be translocated to  nucleus. The binding of SUFU by STIL during STIL expression releases GLI1 from SUFU repression. Gene transcription can then begin as GLI1 enters the nucleus. The transcription of Gli1 cannot begin if STIL is altered. Normally, STIL to bind SUFU, relieve SUFU's inhibition of GLI1, and then allow GLI1 to go to the nucleus for gene transcription. The inability of the SUFU-GLI1 heterodimers prevents the completion of Shh downstream signaling transduction when STIL is mutated.

Role of STIL in cancer

Numerous malignancies have been identified to have STIL disorders, which have fueled carcinogenesis. Copy number variation, mutation, and DNA methylation all had an impact on STIL's dysregulated expression. The expression of STIL was inversely linked with numerous ciliogenesis-related genes. The equilibrium of STIL expression is crucial for the development of primary cilia. STIL silencing might facilitate the development of primary cilia and prevent the production of cell cycle-related proteins. There are no primary cilia when STIL expression is completely lost. Increased cancer metastatic potential is linked to STIL overexpression. STIL has associated with various cancers including lung cancer, colon cancer, pancreatic cancer, prostate adenocarcinoma, and ovarian cancer. The production of mitotic spindles, as well as SHH signaling and the operation of its interactors, are all likely impacted by STIL overexpression, which is linked to a high histopathological mitotic index in tumors. Overexpression of STIL may function as oncogenes and cause cancer by encouraging spindle abnormalities. Spindle orientation control is lost due to disordered mitotic spindles caused by STIL downregulation. This may lead to a reduction in the number of cortical progenitors by cell death or premature differentiation. PLK4 overexpression also causes centrosome amplification and aneuploidy, which reduce brain volume as a result of cell death . Apoptosis inhibition in this setting results in an accumulation of aneuploid cells that are unable to proliferate effectively, causing premature neural differentiation, whereas PLK4 overexpression in environment induces skin cancer.

As a PLK4 downstream effector, STIL may possibly indirectly affect cancer. Malignancies such juvenile medulloblastoma, breast tumors, and colorectal cancer have all been linked to elevated PLK4 expression. Multiple organs develop spontaneous tumors as a result of PLK4 overexpression. It is unclear if STIL expression is necessary for this trait. PLK4 remodels the cytoskeleton and may be important for cancer invasion and metastasis because STIL binds to PLK4 in the cytoplasm. As a result, STIL expression levels may have an impact on PLK4 cytoplasmic activity. PLK4 depletion is associated with an increase in E-cadherin expression and a reduction in metastasis.

In addition to these conditions, CYCLIN B is frequently elevated in primary breast cancer, esophageal squamous cell carcinoma, laryngeal squamous cell carcinoma, and colorectal carcinoma. Downregulation of STIL inhibits tumor growth in vivo by lowering CDK1/CYCLIN B activity, delaying G2-M transition, and preventing G2-M transition. While elevating STIL might encourage CDK1/CYCLIN B activity and unintentionally contribute to CYCLIN B-dependent proliferation in tumor cells. The absence of STIL also causes an increase of Chfr and a decrease in PLK1, which activates the CDC25c phosphatase. Thus, this route may be able to regulate cell division independent of its essential function in centriole duplication.

Role of STIL in neural development

The pattern of STIL expression during the fetal stages supports the link between this gene and cell proliferation. At 15 postconceptional weeks, STIL is more strongly expressed in the ganglionic eminence, the rostral migratory stream, the ventricular and sub ventricular zones of the forebrain. [6] While it is less expressed in the intermediate zone, sub plate, cortical plate, marginal zone, and sub granular layer. The manifestation of this pattern is still present at 21 postconceptional weeks, but it is less prominent in the sub ventricular region.

Although the expression of SAS-6 and STIL differs in some areas of the cortical plate, PLK4, SAS-6, and CPAP also often exhibit this pattern of expression. The exterior granule layer and areas of the rhombic lip of the cerebellum express STIL, PLK4, and SAS-6 but not CPAP. However, none of these genes are expressed in the migratory streams of the hindbrain, the ventricular matrix zone of the cerebellum, or the transitory Purkinje cell cluster.

When the head circumference is less than the age-specific and gender-adjusted mean by more than two standard deviations (S.D.s) at birth, microcephaly (small brain size) is inferred. Primary microcephaly is the term used to describe genetic microcephalies that can be seen in pregnancy. The majority of them, known as microcephalic dwarfism, are autosomal recessive and include I solitary variants known as Microcephaly Primary Hereditary (MCPH), and (ii) types linked to growth retardation. A MCPH phenotype is linked to the majority of STIL mutations found in patients, and STIL is known as MCPH7. Both an increase and a decrease in STIL protein levels during the cell cycle have an impact on centriole control and cause microcephaly.

Related Research Articles

<span class="mw-page-title-main">ASPM (gene)</span>

Abnormal spindle-like microcephaly-associated protein, also known as abnormal spindle protein homolog or Asp homolog, is a protein that in humans is encoded by the ASPM gene. ASPM is located on chromosome 1, band q31 (1q31). The ASPM gene contains 28 exons and codes for a 3477 amino‐acid‐long protein. The ASPM protein is conserved across species including human, mouse, Drosophila, and C. elegans. Defective forms of the ASPM gene are associated with autosomal recessive primary microcephaly.

<span class="mw-page-title-main">GLI1</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein GLI1 also known as glioma-associated oncogene is a protein that in humans is encoded by the GLI1 gene. It was originally isolated from human glioblastoma cells.

<span class="mw-page-title-main">GLI2</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein GLI2 also known as GLI family zinc finger 2 is a protein that in humans is encoded by the GLI2 gene. The protein encoded by this gene is a transcription factor.

<span class="mw-page-title-main">GLI3</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein GLI3 is a protein that in humans is encoded by the GLI3 gene.

David Moore Glover is a British geneticist and Research Professor of Biology and Biological Engineering at the California Institute of Technology. He served as Balfour Professor of Genetics at the University of Cambridge, a Wellcome Trust investigator in the Department of Genetics at the University of Cambridge, and Fellow of Fitzwilliam College, Cambridge. He serves as the first editor-in-chief of the open-access journal Open Biology published by the Royal Society.

<span class="mw-page-title-main">TAL1</span> Protein-coding gene in the species Homo sapiens

T-cell acute lymphocytic leukemia protein 1 is a protein that in humans is encoded by the TAL1 gene.

<span class="mw-page-title-main">SMC1A</span> Protein-coding gene in the species Homo sapiens

Structural maintenance of chromosomes protein 1A (SMC1A) is a protein that in humans is encoded by the SMC1A gene. SMC1A is a subunit of the cohesin complex which mediates sister chromatid cohesion, homologous recombination and DNA looping. In somatic cells, cohesin is formed of SMC1A, SMC3, RAD21 and either SA1 or SA2 whereas in meiosis, cohesin is formed of SMC3, SMC1B, REC8 and SA3.

<span class="mw-page-title-main">PLK1</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PLK1, also known as polo-like kinase 1 (PLK-1) or serine/threonine-protein kinase 13 (STPK13), is an enzyme that in humans is encoded by the PLK1 gene.

<span class="mw-page-title-main">BUB1</span>

Mitotic checkpoint serine/threonine-protein kinase BUB1 also known as BUB1 is an enzyme that in humans is encoded by the BUB1 gene.

<span class="mw-page-title-main">GATA2</span> Protein-coding gene in the species Homo sapiens

GATA2 or GATA-binding factor 2 is a transcription factor, i.e. a nuclear protein which regulates the expression of genes. It regulates many genes that are critical for the embryonic development, self-renewal, maintenance, and functionality of blood-forming, lympathic system-forming, and other tissue-forming stem cells. GATA2 is encoded by the GATA2 gene, a gene which often suffers germline and somatic mutations which lead to a wide range of familial and sporadic diseases, respectively. The gene and its product are targets for the treatment of these diseases.

<span class="mw-page-title-main">BUB1B</span>

Mitotic checkpoint serine/threonine-protein kinase BUB1 beta is an enzyme that in humans is encoded by the BUB1B gene. Also known as BubR1, this protein is recognized for its mitotic roles in the spindle assembly checkpoint (SAC) and kinetochore-microtubule interactions that facilitate chromosome migration and alignment. BubR1 promotes mitotic fidelity and protects against aneuploidy by ensuring proper chromosome segregation between daughter cells. BubR1 is proposed to prevent tumorigenesis.

<span class="mw-page-title-main">PMEL (gene)</span>

Melanocyte protein PMEL also known as premelanosome protein (PMEL) or silver locus protein homolog (SILV) is a protein that in humans is encoded by the PMEL gene. Its gene product may be referred to as PMEL, silver, ME20, gp100 or Pmel17.

<span class="mw-page-title-main">FOXM1</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein M1 is a protein that in humans is encoded by the FOXM1 gene. The protein encoded by this gene is a member of the FOX family of transcription factors. Its potential as a target for future cancer treatments led to it being designated the 2010 Molecule of the Year.

<span class="mw-page-title-main">TLX1</span> Protein coding gene in Humans

T-cell leukemia homeobox protein 1 is a protein that in humans is encoded by the TLX1 gene, which was initially named HOX11.

<span class="mw-page-title-main">TLX3</span> Protein-coding gene in the species Homo sapiens

T-cell leukemia homeobox protein 3 is a protein that in humans is encoded by the TLX3 gene.

<span class="mw-page-title-main">SUFU</span> Protein-coding gene in the species Homo sapiens

Suppressor of fused homolog is a protein that in humans is encoded by the SUFU gene. In molecular biology, the protein domain suppressor of fused protein (Sufu) has an important role in the cell. The Sufu is important in negatively regulating an important signalling pathway in the cell, the Hedgehog signalling pathway (HH). This particular pathway is crucial in embryonic development. There are several homologues of Sufu, found in a wide variety of organisms.

<span class="mw-page-title-main">Aurora kinase C</span> Protein-coding gene in the species Homo sapiens

Aurora kinase C, also Serine/threonine-protein kinase 13 is an enzyme that in humans is encoded by the AURKC gene.

<span class="mw-page-title-main">PICALM</span>

Phosphatidylinositol binding clathrin assembly protein, also known as PICALM, is a protein which in humans is encoded by the PICALM gene.

<span class="mw-page-title-main">BCL2L14</span> Protein-coding gene in the species Homo sapiens

Apoptosis facilitator Bcl-2-like protein 14 is a protein that in humans is encoded by the BCL2L14 gene.

<span class="mw-page-title-main">Centrosome cycle</span> Centrioles are nine triplets microtubules

Centrosomes are the major microtubule organizing centers (MTOC) in mammalian cells. Failure of centrosome regulation can cause mistakes in chromosome segregation and is associated with aneuploidy. A centrosome is composed of two orthogonal cylindrical protein assemblies, called centrioles, which are surrounded by a protein dense amorphous cloud of pericentriolar material (PCM). The PCM is essential for nucleation and organization of microtubules. The centrosome cycle is important to ensure that daughter cells receive a centrosome after cell division. As the cell cycle progresses, the centrosome undergoes a series of morphological and functional changes. Initiation of the centrosome cycle occurs early in the cell cycle in order to have two centrosomes by the time mitosis occurs.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000123473 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028718 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Patwardhan, Dhruti; Mani, Shyamala; Passemard, Sandrine; Gressens, Pierre; El Ghouzzi, Vincent (2018-01-19). "STIL balancing primary microcephaly and cancer". Cell Death & Disease. 9 (2): 65. doi:10.1038/s41419-017-0101-9. ISSN   2041-4889. PMC   5833631 . PMID   29352115.
  6. 1 2 Li, Lei; Liu, Congcong; Carr, Aprell L. (2019-04-25). "STIL: a multi-function protein required for dopaminergic neural proliferation, protection, and regeneration". Cell Death Discovery. 5 (1): 90. doi: 10.1038/s41420-019-0172-8 . ISSN   2058-7716. PMC   6484007 . PMID   31044090.
  7. Kasai, Kenji; Inaguma, Shingo; Yoneyama, Akiko; Yoshikawa, Kazuhiro; Ikeda, Hiroshi (2008-10-01). "SCL/TAL1 Interrupting Locus Derepresses GLI1 from the Negative Control of Suppressor-of-Fused in Pancreatic Cancer Cell". Cancer Research. 68 (19): 7723–7729. doi:10.1158/0008-5472.CAN-07-6661. ISSN   0008-5472. PMID   18829525.

Further reading

     Kumar A, Girimaji SC, Duvvari MR, Blanton SH (2009): Mutations in STIL,          encoding a pericentriolar and centrosomal protein, cause primary         microcephaly. American Journal of Human Genetics 84:286-290.