Samail Ophiolite

Last updated
Arabian Plate map with Samail Ophiolite location on the eastern corner of the Arabian Peninsula Arabian Plate map with Semail Ophiolite location.tif
Arabian Plate map with Samail Ophiolite location on the eastern corner of the Arabian Peninsula
Close-up view of a section of the ophiolite. Section of Samail Ophiolite.jpg
Close-up view of a section of the ophiolite.

The Samail Ophiolite, also known as the Semail Ophiolite, is a large, ancient geological formation in Oman and the United Arab Emirates in the Arabian Peninsula. [2] It is one of the world's largest and best-exposed segments of oceanic crust, made of volcanic rocks and ultramafic rocks from the Earth's upper mantle that was overthrust onto the continental crust. [3] This ophiolite provides insight into the dynamics of oceanic crust formation and the tectonic processes involved in the creation of ocean basins. [3]

Contents

Formed during the Late Cretaceous period, approximately 95 million years ago, [4] the Samail Ophiolite represents a fragment of the Tethyan Oceanic crust that was thrust over continental crust due to the convergence of the African and Eurasian tectonic plates. This geological phenomenon, known as obduction, makes it a site for studying the processes of oceanic crust formation, subduction, and obduction.

It covers an area of around 100,000 square kilometers, [3] and is a complete and well-preserved stratigraphic section. This includes layers from the Earth's upper mantle, along with cumulate rocks, gabbros, sheeted dike complexes, and volcanic sequences, providing a vertical profile of oceanic lithosphere. It is primarily made of silicate rocks with (SiO2) content ranging from 45–77 wt%. [5]

Geologic formations

The Arabian continental margin formed in the early Paleozoic and possibly the late Proterozoic. After that the thrust sheets are from low to high structurally: the autochthonous units, and the allochthonous units. The allochthonous units, from low to high structurally, are the Sumeini group, the Hawasina complex, the Haybi complex, the Ophiolite, and the Batinah complex. [6] From the Sumeini group to the Haybi Complex make up the continental slope with an age range from Middle Triassic to Late Cretaceous. [6] The ophiolite formed in the Late Cretaceous and consists of a basal metamorphic sole (150–200 m), peridotite tectonic (8–12 km), igneous peridotite and gabbro (0.5–6.5 km), sheeted dikes (1–1.5 km), and lavas (0.5–2.0 km). [6] The Batinah complex containing continental margin sediments came from beneath the ophiolite during late-stage extensional faulting and then slid into the ophiolite late in the emplacement history. [6]

Metamorphic Sole

There are two locations where the metamorphic core of the ophiolite are exposed. These locations occur at the Sumeini Window and the Wadi Tayyin. [7] The Sumeini Window is lcoated in northern Oman at the base of the ophiolite. The Wadi Tayyin is located in southwestern Oman near the classic Green Pool locality. The metamorphic rocks include garnet and clinopyroxene-bearing granulite, hornblende and plagioclase amphibolite, epidote, and greenschist facies sediments that include cherts, marbles, and quartzites. Although there have been many theories about the pressure-temperature environment of these metamorphic soles, Cowan et al. suggest that the formational temperatures and pressure of the metamorphic being 770-900 degrees celsius and 11-13 kbar respectively are representative of a subduction zone that was present before the emplacement of the ophiolite. [7]

Formation

There are three different models that may explain how the Samail Ophiolite could form and overthrust a continental margin:

Related Research Articles

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain-building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.

Obduction is a geological process whereby denser oceanic crust is scraped off a descending ocean plate at a convergent plate boundary and thrust on top of an adjacent plate. When oceanic and continental plates converge, normally the denser oceanic crust sinks under the continental crust in the process of subduction. Obduction, which is less common, normally occurs in plate collisions at orogenic belts or back-arc basins.

<span class="mw-page-title-main">Ophiolite</span> Uplifted and exposed oceanic crust

An ophiolite is a section of Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed, and often emplaced onto continental crustal rocks.

<span class="mw-page-title-main">Convergent boundary</span> Region of active deformation between colliding tectonic plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

<span class="mw-page-title-main">Oceanic crust</span> Uppermost layer of the oceanic portion of a tectonic plate

Oceanic crust is the uppermost layer of the oceanic portion of the tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumulates. The crust overlies the rigid uppermost layer of the mantle. The crust and the rigid upper mantle layer together constitute oceanic lithosphere.

<span class="mw-page-title-main">Forearc</span> The region between an oceanic trench and the associated volcanic arc

Forearc is a plate tectonic term referring to a region in a subduction zone between an oceanic trench and the associated volcanic arc. Forearc regions are present along convergent margins and eponymously form 'in front of' the volcanic arcs that are characteristic of convergent plate margins. A back-arc region is the companion region behind the volcanic arc.

<span class="mw-page-title-main">Continental collision</span> Phenomenon in which mountains can be produced on the boundaries of converging tectonic plates

In geology, continental collision is a phenomenon of plate tectonics that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produced, and two continents sutured together. Continental collision is only known to occur on Earth.

<span class="mw-page-title-main">Rock cycle</span> Transitional concept of geologic time

The rock cycle is a basic concept in geology that describes transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. Each rock type is altered when it is forced out of its equilibrium conditions. For example, an igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and change as they encounter new environments. The rock cycle explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.

<span class="mw-page-title-main">Grenville orogeny</span> Mesoproterozoic mountain-building event

The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland.

<span class="mw-page-title-main">Lizard complex</span>

The Lizard complex, Cornwall is generally accepted to represent a preserved example of an exposed ophiolite complex in the United Kingdom. The rocks found in The Lizard area are analogous to those found in such famous areas as the Troodos Mountains, Cyprus and the Semail Ophiolite, Oman.

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Hajar Mountains</span> Mountain range in Oman and the UAE

The Hajar Mountains are one of the highest mountain ranges in the Arabian Peninsula, shared between northern Oman and eastern United Arab Emirates. Also known as "Oman Mountains", they separate the low coastal plain of Oman from the high desert plateau, and lie 50–100 km (31–62 mi) inland from the Gulf of Oman.

<span class="mw-page-title-main">Bangong suture</span>

The Bangong suture zone is a key location in the central Tibet conjugate fault zone. Approximately 1,200 km long, the suture trends in an east–west orientation. Located in central Tibet between the Lhasa and Qiangtang terranes, it is a discontinuous belt of ophiolites and mélange that is 10–20 km wide, up to 50 km wide in places. The northern part of the fault zone consists of northeast striking sinistral strike-slip faults while the southern part consists of northwest striking right lateral strike-slip faults. These conjugate faults to the north and south of the Bangong intersect with each other along the Bangong-Nujiang suture zone.

The Troodos Ophiolite on the island of Cyprus represents a Late Cretaceous spreading axis that has since been uplifted due to its positioning on the overriding Anatolian plate at the Cyprus arc and ongoing subduction to the south of the Eratosthenes Seamount.

<span class="mw-page-title-main">High pressure metamorphic terranes along the Bangong-Nujiang Suture Zone</span>

High pressure terranes along the ~1200 km long east-west trending Bangong-Nujiang suture zone (BNS) on the Tibetan Plateau have been extensively mapped and studied. Understanding the geodynamic processes in which these terranes are created is key to understanding the development and subsequent deformation of the BNS and Eurasian deformation as a whole.

<span class="mw-page-title-main">Subduction zone metamorphism</span> Changes of rock due to pressure and heat near a subduction zone

A subduction zone is a region of the Earth's crust where one tectonic plate moves under another tectonic plate; oceanic crust gets recycled back into the mantle and continental crust gets created by the formation of arc magmas. Arc magmas account for more than 20% of terrestrially produced magmas and are produced by the dehydration of minerals within the subducting slab as it descends into the mantle and are accreted onto the base of the overriding continental plate. Subduction zones host a unique variety of rock types created by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process creates and destroys water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding the timing and conditions in which these dehydration reactions occur, is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust.

<span class="mw-page-title-main">Geological history of Borneo</span>

The base of rocks that underlie Borneo, an island in Southeast Asia, was formed by the arc-continent collisions, continent–continent collisions and subduction–accretion due to convergence between the Asian, India–Australia, and Philippine Sea-Pacific plates over the last 400 million years. The active geological processes of Borneo are mild as all of the volcanoes are extinct. The geological forces shaping SE Asia today are from three plate boundaries: the collisional zone in Sulawesi southeast of Borneo, the Java-Sumatra subduction boundary and the India-Eurasia continental collision.

<span class="mw-page-title-main">Geology of New Caledonia</span>

The geology of New Caledonia includes all major rock types, which here range in age from ~290 million years old (Ma) to recent. Their formation is driven by alternate plate collisions and rifting. The mantle-derived Eocene Peridotite Nappe is the most significant and widespread unit. The igneous unit consists of ore-rich ultramafic rocks thrust onto the main island. Mining of valuable metals from this unit has been an economical pillar of New Caledonia for more than a century.

<span class="mw-page-title-main">Chile Ridge</span> Submarine oceanic ridge in the Pacific Ocean

The Chile Ridge, also known as the Chile Rise, is a submarine oceanic ridge formed by the divergent plate boundary between the Nazca Plate and the Antarctic Plate. It extends from the triple junction of the Nazca, Pacific, and Antarctic plates to the Southern coast of Chile. The Chile Ridge is easy to recognize on the map, as the ridge is divided into several segmented fracture zones which are perpendicular to the ridge segments, showing an orthogonal shape toward the spreading direction. The total length of the ridge segments is about 550–600 km.

References

  1. Deep Carbon Observatory (2019). Deep Carbon Observatory: A Decade of Discovery. Washington, DC. doi:10.17863/CAM.44064 . Retrieved 13 December 2019.{{cite book}}: CS1 maint: location missing publisher (link)
  2. Ágoston Sasvári; Tamás Pocsai; László Csontos; Gizella B. Árgyelán (2008). "Significance of the evaporite occurrences in the Hawasina Window, Oman Mountains" (PDF). MOL Scientific Magazine: 87–92.
  3. 1 2 3 4 5 6 Jan Schreurs; John Millson. "Ophiolites a natural wonder" (PDF). Retrieved 10 October 2013.
  4. Wilson, H. Hugh (July 2000). "The Age Of The Hawasina And Other Problems Of Oman Mountain Geology". Journal of Petroleum Geology. 23 (3): 345–362. Bibcode:2000JPetG..23..345W. doi:10.1111/j.1747-5457.2000.tb01023.x. S2CID   128840838.
  5. Rodney V. Metcalf; John W. Shervais (2008). "Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum?" (PDF). In Wright, J.E.; Shervais, J.W. (eds.). Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson. Geological Society of America, Special Paper. Vol. 438. Geological Society of America. pp. 191–222. doi:10.1130/2008.2438(07). ISBN   978-0-8137-2438-6.
  6. 1 2 3 4 5 6 Hacker, Bradley R. (April 1991). "The Role Of Deformation In The Formation Of Metamorphic Gradients: Ridge Subduction Beneath The Oman Ophiolite". Tectonics. 10 (2): 455–473. Bibcode:1991Tecto..10..455H. doi:10.1029/90TC02779.
  7. 1 2 Cowan, R.J. "Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes".
  8. "Reinhardt BM 1974 Geology of the Oman mountains". Verhandelingen Koninklijk Nederlands Geologisch Mijnbouwkundidg Genootschap. 31: 423.
  9. 1 2 Oxburgh, E. R. (1972). "Flake Tectonics and Continental Collision". Nature. 239 (5369): 202–204. Bibcode:1972Natur.239..202O. doi:10.1038/239202a0. S2CID   4186536.