Satellite collision

Last updated

Strictly speaking, a satellite collision is when two satellites collide while in orbit around a third, much larger body, such as a planet or moon. This definition is typically loosely extended to include collisions between sub-orbital or escape-velocity objects with an object in orbit. Prime examples are the anti-satellite weapon tests. There have been no observed collisions between natural satellites, but impact craters may show evidence of such events. Both intentional and unintentional collisions have occurred between man-made satellites around Earth since the 1980s. Anti-satellite weapon tests and failed rendezvous or docking operations can result in orbital space debris, which in turn may collide with other satellites.

Contents

Natural-satellite collisions

There have been no observed collisions between natural satellites of any Solar System planet or moon. Collision candidates for past events are:

Artificial-satellite collisions

Three types of collisions have occurred involving artificial satellites orbiting the Earth:

Spacecraft impacts with moons

Satellite collision avoidance

Satellite operators frequently maneuver their satellites to avoid potential collisions. One notable near collision was Sept 2019 between an ESA satellite and a SpaceX Starlink satellite, when ESA tweeted/complained at having to move to avoid the Starlink satellite. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Satellite</span> Objects intentionally placed into orbit

A satellite or artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. Satellites have a variety of uses, including communication relay, weather forecasting, navigation (GPS), broadcasting, scientific research, and Earth observation. Additional military uses are reconnaissance, early warning, signals intelligence and, potentially, weapon delivery. Other satellites include the final rocket stages that place satellites in orbit and formerly useful satellites that later become defunct.

<span class="mw-page-title-main">Anti-satellite weapon</span> Kinetic energy device designed to destroy satellites in orbit

Anti-satellite weapons (ASAT) are space weapons designed to incapacitate or destroy satellites for strategic or tactical purposes. Although no ASAT system has yet been utilized in warfare, a few countries have successfully shot down their own satellites to demonstrate their ASAT capabilities in a show of force. ASATs have also been used to remove decommissioned satellites.

<span class="mw-page-title-main">Space debris</span> Pollution around Earth by defunct artificial objects

Space debris are defunct human-made objects in space – principally in Earth orbit – which no longer serve a useful function. These include derelict spacecraft, mission-related debris, and particularly-numerous in-Earth orbit fragmentation debris from the breakup of derelict rocket bodies and spacecraft. In addition to derelict human-made objects left in orbit, space debris includes fragments from disintegration, erosion, or collisions; solidified liquids expelled from spacecraft; unburned particles from solid rocket motors; and even paint flecks. Space debris represents a risk to spacecraft.

Kosmos is a designation given to many satellites operated by the Soviet Union and subsequently Russia. Kosmos 1, the first spacecraft to be given a Kosmos designation, was launched on 16 March 1962.

<span class="mw-page-title-main">Space warfare</span> Combat that takes place in outer space

Space warfare is combat in which one or more belligerents are situated in outer space. The scope of space warfare therefore includes ground-to-space warfare, such as attacking satellites from the Earth; space-to-space warfare, such as satellites attacking satellites; and space-to-ground warfare, such as satellites attacking Earth-based targets. Space warfare in fiction is thus sub-genre and theme of science fiction, where it is portrayed with a range of realism and plausibility. In the real world, international treaties are in place that attempt to regulate conflicts in space and limit the installation of space weapon systems, especially nuclear weapons.

<span class="mw-page-title-main">Hypervelocity</span> Very high velocity

Hypervelocity is very high velocity, approximately over 3,000 meters per second. In particular, hypervelocity is velocity so high that the strength of materials upon impact is very small compared to inertial stresses. Thus, metals and fluids behave alike under hypervelocity impact. An impact under extreme hypervelocity results in vaporization of the impactor and target. For structural metals, hypervelocity is generally considered to be over 2,500 m/s. Meteorite craters are also examples of hypervelocity impacts.

<span class="mw-page-title-main">Kessler syndrome</span> Theoretical runaway satellite collision cascade that could render parts of Earth orbit unusable

The Kessler syndrome, proposed by NASA scientist Donald J. Kessler in 1978, is a scenario in which the density of objects in low Earth orbit (LEO) due to space pollution is numerous enough that collisions between objects could cause a cascade in which each collision generates space debris that increases the likelihood of further collisions. In 2009, Kessler wrote that modeling results had concluded that the debris environment was already unstable, "such that any attempt to achieve a growth-free small debris environment by eliminating sources of past debris will likely fail because fragments from future collisions will be generated faster than atmospheric drag will remove them". One implication is that the distribution of debris in orbit could render space activities and the use of satellites in specific orbital ranges difficult for many generations.

Space policy is the political decision-making process for, and application of, public policy of a state regarding spaceflight and uses of outer space, both for civilian and military purposes. International treaties, such as the 1967 Outer Space Treaty, attempt to maximize the peaceful uses of space and restrict the militarization of space.

<span class="mw-page-title-main">USA-193</span> U.S. military satellite (2006–2008)

USA-193, also known as NRO Launch 21, was a United States military reconnaissance satellite launched on 14 December 2006. It was the first launch conducted by the United Launch Alliance (ULA). Owned by the National Reconnaissance Office (NRO), the craft's precise function and purpose were classified. On 21 February 2008, it was destroyed as a result of Operation Burnt Frost.

Spacecraft collision avoidance is the implementation and study of processes minimizing the chance of orbiting spacecraft inadvertently colliding with other orbiting objects. The most common subject of spacecraft collision avoidance research and development is for human-made satellites in geocentric orbits. The subject includes procedures designed to prevent the accumulation of space debris in orbit, analytical methods for predicting likely collisions, and avoidance procedures to maneuver offending spacecraft away from danger.

<i>Jules Verne</i> ATV 2008 European resupply spaceflight to the ISS

The Jules Verne ATV, or Automated Transfer Vehicle 001 (ATV-001), was a robotic cargo spacecraft launched by the European Space Agency (ESA). The ATV was named after the 19th-century French science-fiction author Jules Verne. It was launched on 9 March 2008 on a mission to supply the International Space Station (ISS) with propellant, water, air, and dry cargo. Jules Verne was the first of five ATVs to be launched.

<span class="mw-page-title-main">2009 satellite collision</span> First hypervelocity spacecraft collision

On February 10, 2009, two communications satellites—the active commercial Iridium 33 and the derelict Russian military Kosmos 2251—accidentally collided at a speed of 11.7 km/s (26,000 mph) and an altitude of 789 kilometres (490 mi) above the Taymyr Peninsula in Siberia. It was the first time a hypervelocity collision occurred between two satellites; previous incidents had involved a satellite and a piece of space debris.

<span class="mw-page-title-main">Operation Burnt Frost</span> 2008 military operation to destroy a non-functioning U.S. satellite

Operation Burnt Frost was a military operation to intercept and destroy non-functioning U.S. National Reconnaissance Office (NRO) satellite USA-193. The mission was described by the Missile Defense Agency as a "mission of safeguarding human life against the uncontrolled re-entry of a 5,000-pound satellite containing over 1,000 pounds of hazardous hydrazine propellant". The launch occurred on 21 February 2008 at approximately 10:26 p.m. EST from the USS Lake Erie, using a heavily modified Standard Missile-3 (SM-3) to shoot down the satellite. A few minutes after launch, the SM-3 intercepted its target and successfully completed its mission. The operation received scrutiny from other countries, mainly China and Russia.

Kosmos 2499 was a Russian satellite orbiting the Earth, before breaking up on January 4, 2023.

The Space Safety Programme, formerly the Space Situational Awareness (SSA) programme, is the European Space Agency's (ESA) initiative to monitor hazards from space, determine their risk, make this data available to the appropriate authorities and where possible, mitigate the threat.

<span class="mw-page-title-main">Deliberate crash landings on extraterrestrial bodies</span> List of deliberate crash landings on extraterrestrial bodies

These are tables of space probes which have been deliberately destroyed at their objects of study, typically by hard landings or crash landings at the end of their respective missions and/or functionality. This list only includes spacecraft specifically commanded to crash into the surface of an extraterrestrial celestial body, thus precluding unintentionally crashed spacecraft, derelict spacecraft, or spacecraft designed as landers. Intentionally crashing spacecraft not only precludes the hazards of orbital space debris and planetary contamination, but also provides the opportunity in some cases for terminal science given that the transient light released by the kinetic energy may be available for spectroscopy; the physical ejecta remains in place for further study. Even after soft landings had been mastered, NASA used crash landings to test whether Moon craters contained ice by crashing space probes into craters and testing the debris that got thrown out.

<span class="mw-page-title-main">Space sustainability</span> Activity aimed at minimising space environmental impact

Space sustainability aims to maintain the safety and health of the space environment.

<span class="mw-page-title-main">Kosmos 1408</span> Soviet artificial satellite destroyed by an ASAT missile

Kosmos-1408 was an electronic signals intelligence (ELINT) satellite operated by the Soviet Union. It was launched into low Earth orbit on 16 September 1982 at 14:55 UTC, replacing Kosmos-1378. It operated for around two years before becoming inactive and left in orbit.

References

  1. "Accidental Collision of YunHai 1-02" (PDF). Orbital Debris Quarterly News. 25 (4). December 2021. Retrieved 27 March 2023.
  2. "Ecuador Pegasus satellite fears over space debris crash". BBC News. 24 May 2013. Retrieved 24 May 2013.
  3. Wall, Mike (17 August 2021). "Space collision: Chinese satellite got whacked by hunk of Russian rocket in March". Space.com . Retrieved 18 August 2021.
  4. ESA spacecraft dodges potential collision with Starlink satellite