Semisimple representation

Last updated

In mathematics, specifically in representation theory, a semisimple representation (also called a completely reducible representation) is a linear representation of a group or an algebra that is a direct sum of simple representations (also called irreducible representations). [1] It is an example of the general mathematical notion of semisimplicity.

Contents

Many representations that appear in applications of representation theory are semisimple or can be approximated by semisimple representations. A semisimple module over an algebra over a field is an example of a semisimple representation. Conversely, a semisimple representation of a group G over a field k is a semisimple module over the group algebra k[G].

Equivalent characterizations

Let V be a representation of a group G; or more generally, let V be a vector space with a set of linear endomorphisms acting on it. In general, a vector space acted on by a set of linear endomorphisms is said to be simple (or irreducible) if the only invariant subspaces for those operators are zero and the vector space itself; a semisimple representation then is a direct sum of simple representations in that sense. [1]

The following are equivalent: [2]

  1. V is semisimple as a representation.
  2. V is a sum of simple subrepresentations.
  3. Each subrepresentation W of V admits a complementary representation: a subrepresentation W' such that .

The equivalence of the above conditions can be proved based on the following lemma, which is of independent interest:

Lemma [3]   Let p:VW be a surjective equivariant map between representations. If V is semisimple, then p splits; i.e., it admits a section.

Proof of the lemma: Write where are simple representations. Without loss of generality, we can assume are subrepresentations; i.e., we can assume the direct sum is internal. Now, consider the family of all possible direct sums with various subsets . Put the partial ordering on it by saying the direct sum over K is less than the direct sum over J if . By Zorn's lemma, we can find a maximal such that . We claim that . By definition, so we only need to show that . If is a proper subrepresentatiom of then there exists such that . Since is simple (irreducible), . This contradicts the maximality of , so as claimed. Hence, is a section of p.

Note that we cannot take to the set of such that . The reason is that it can happen, and frequently does, that is a subspace of and yet . For example, take , and to be three distinct lines through the origin in . For an explicit counterexample, let be the algebra of 2-by-2 matrices and set , the regular representation of . Set and and set . Then , and are all irreducible -modules and . Let be the natural surjection. Then and . In this case, but because this sum is not direct.

Proof of equivalences [4] : Take p to be the natural surjection . Since V is semisimple, p splits and so, through a section, is isomorphic to a subrepretation that is complementary to W.

: We shall first observe that every nonzero subrepresentation W has a simple subrepresentation. Shrinking W to a (nonzero) cyclic subrepresentation we can assume it is finitely generated. Then it has a maximal subrepresentation U. By the condition 3., for some . By modular law, it implies . Then is a simple subrepresentation of W ("simple" because of maximality). This establishes the observation. Now, take to be the sum of all simple subrepresentations, which, by 3., admits a complementary representation . If , then, by the early observation, contains a simple subrepresentation and so , a nonsense. Hence, .

: [5] The implication is a direct generalization of a basic fact in linear algebra that a basis can be extracted from a spanning set of a vector space. That is we can prove the following slightly more precise statement:

As in the proof of the lemma, we can find a maximal direct sum that consists of some 's. Now, for each i in I, by simplicity, either or . In the second case, the direct sum is a contradiction to the maximality of W. Hence, .

Examples and non-examples

Unitary representations

A finite-dimensional unitary representation (i.e., a representation factoring through a unitary group) is a basic example of a semisimple representation. Such a representation is semisimple since if W is a subrepresentation, then the orthogonal complement to W is a complementary representation [6] because if and , then for any w in W since W is G-invariant, and so .

For example, given a continuous finite-dimensional complex representation of a finite group or a compact group G, by the averaging argument, one can define an inner product on V that is G-invariant: i.e., , which is to say is a unitary operator and so is a unitary representation. [6] Hence, every finite-dimensional continuous complex representation of G is semisimple. [7] For a finite group, this is a special case of Maschke's theorem, which says a finite-dimensional representation of a finite group G over a field k with characteristic not dividing the order of G is semisimple. [8] [9]

Representations of semisimple Lie algebras

By Weyl's theorem on complete reducibility, every finite-dimensional representation of a semisimple Lie algebra over a field of characteristic zero is semisimple. [10]

Separable minimal polynomials

Given a linear endomorphism T of a vector space V, V is semisimple as a representation of T (i.e., T is a semisimple operator) if and only if the minimal polynomial of T is separable; i.e., a product of distinct irreducible polynomials. [11]

Associated semisimple representation

Given a finite-dimensional representation V, the Jordan–Hölder theorem says there is a filtration by subrepresentations: such that each successive quotient is a simple representation. Then the associated vector space is a semisimple representation called an associated semisimple representation, which, up to an isomorphism, is uniquely determined by V. [12]

Unipotent group non-example

A representation of a unipotent group is generally not semisimple. Take to be the group consisting of real matrices ; it acts on in a natural way and makes V a representation of G. If W is a subrepresentation of V that has dimension 1, then a simple calculation shows that it must be spanned by the vector . That is, there are exactly three G-subrepresentations of V; in particular, V is not semisimple (as a unique one-dimensional subrepresentation does not admit a complementary representation). [13]

Semisimple decomposition and multiplicity

The decomposition of a semisimple representation into simple ones, called a semisimple decomposition, need not be unique; for example, for a trivial representation, simple representations are one-dimensional vector spaces and thus a semisimple decomposition amounts to a choice of a basis of the representation vector space. [14] The isotypic decomposition, on the other hand, is an example of a unique decomposition. [15]

However, for a finite-dimensional semisimple representation V over an algebraically closed field, the numbers of simple representations up to isomorphism appearing in the decomposition of V (1) are unique and (2) completely determine the representation up to isomorphism; [16] this is a consequence of Schur's lemma in the following way. Suppose a finite-dimensional semisimple representation V over an algebraically closed field is given: by definition, it is a direct sum of simple representations. By grouping together simple representations in the decomposition that are isomorphic to each other, up to an isomorphism, one finds a decomposition (not necessarily unique): [16]

where are simple representations, mutually non-isomorphic to one another, and are positive integers. By Schur's lemma,

,

where refers to the equivariant linear maps. Also, each is unchanged if is replaced by another simple representation isomorphic to . Thus, the integers are independent of chosen decompositions; they are the multiplicities of simple representations , up to isomorphism, in V. [17]

In general, given a finite-dimensional representation of a group G over a field k, the composition is called the character of . [18] When is semisimple with the decomposition as above, the trace is the sum of the traces of with multiplicities and thus, as functions on G,

where are the characters of . When G is a finite group or more generally a compact group and is a unitary representation with the inner product given by the averaging argument, the Schur orthogonality relations say: [19] the irreducible characters (characters of simple representations) of G are an orthonormal subset of the space of complex-valued functions on G and thus .

Isotypic decomposition

There is a decomposition of a semisimple representation that is unique, called the isotypic decomposition of the representation. By definition, given a simple representation S, the isotypic component of type S of a representation V is the sum of all subrepresentations of V that are isomorphic to S; [15] note the component is also isomorphic to the direct sum of some choice of subrepresentations isomorphic to S (so the component is unique, while the summands are not necessary so).

Then the isotypic decomposition of a semisimple representation V is the (unique) direct sum decomposition: [15] [20]

where is the set of isomorphism classes of simple representations of G and is the isotypic component of V of type S for some .

Example

Let be the space of homogeneous degree-three polynomials over the complex numbers in variables . Then acts on by permutation of the three variables. This is a finite-dimensional complex representation of a finite group, and so is semisimple. Therefore, this 10-dimensional representation can be broken up into three isotypic components, each corresponding to one of the three irreducible representations of . In particular, contains three copies of the trivial representation, one copy of the sign representation, and three copies of the two-dimensional irreducible representation of . For example, the span of and is isomorphic to . This can more easily be seen by writing this two-dimensional subspace as

.

Another copy of can be written in a similar form:

.

So can the third:

.

Then is the isotypic component of type in .

Completion

In Fourier analysis, one decomposes a (nice) function as the limit of the Fourier series of the function. In much the same way, a representation itself may not be semisimple but it may be the completion (in a suitable sense) of a semisimple representation. The most basic case of this is the Peter–Weyl theorem, which decomposes the left (or right) regular representation of a compact group into the Hilbert-space completion of the direct sum of all simple unitary representations. As a corollary, [21] there is a natural decomposition for = the Hilbert space of (classes of) square-integrable functions on a compact group G:

where means the completion of the direct sum and the direct sum runs over all isomorphism classes of simple finite-dimensional unitary representations of G. [note 1] Note here that every simple unitary representation (up to an isomorphism) appears in the sum with the multiplicity the dimension of the representation.

When the group G is a finite group, the vector space is simply the group algebra of G and also the completion is vacuous. Thus, the theorem simply says that

That is, each simple representation of G appears in the regular representation with multiplicity the dimension of the representation. [22] This is one of standard facts in the representation theory of a finite group (and is much easier to prove).

When the group G is the circle group , the theorem exactly amounts to the classical Fourier analysis. [23]

Applications to physics

In quantum mechanics and particle physics, the angular momentum of an object can be described by complex representations of the rotation group SO(3), all of which are semisimple. [24] Due to connection between SO(3) and SU(2), the non-relativistic spin of an elementary particle is described by complex representations of SU(2) and the relativistic spin is described by complex representations of SL2(C), all of which are semisimple. [24] In angular momentum coupling, Clebsch–Gordan coefficients arise from the multiplicities of irreducible representations occurring in the semisimple decomposition of a tensor product of irreducible representations. [25]

Notes

  1. To be precise, the theorem concerns the regular representation of and the above statement is a corollary.

Related Research Articles

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur.

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.

<span class="mw-page-title-main">Compact group</span> Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

<span class="mw-page-title-main">Cartan subalgebra</span> Nilpotent subalgebra of a Lie algebra

In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

<span class="mw-page-title-main">Representation theory of the Lorentz group</span> Representation of the symmetry group of spacetime in special relativity

The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In number theory, cuspidal representations are certain representations of algebraic groups that occur discretely in spaces. The term cuspidal is derived, at a certain distance, from the cusp forms of classical modular form theory. In the contemporary formulation of automorphic representations, representations take the place of holomorphic functions; these representations may be of adelic algebraic groups.

Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.

<span class="mw-page-title-main">Representation theory</span> Branch of mathematics that studies abstract algebraic structures

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects help glean properties and sometimes simplify calculations on more abstract theories.

In mathematics, Maschke's theorem, named after Heinrich Maschke, is a theorem in group representation theory that concerns the decomposition of representations of a finite group into irreducible pieces. Maschke's theorem allows one to make general conclusions about representations of a finite group G without actually computing them. It reduces the task of classifying all representations to a more manageable task of classifying irreducible representations, since when the theorem applies, any representation is a direct sum of irreducible pieces (constituents). Moreover, it follows from the Jordan–Hölder theorem that, while the decomposition into a direct sum of irreducible subrepresentations may not be unique, the irreducible pieces have well-defined multiplicities. In particular, a representation of a finite group over a field of characteristic zero is determined up to isomorphism by its character.

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module

In homological algebra, Whitehead's lemmas represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology.

In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few.

In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context.

This is a glossary of representation theory in mathematics.

In abstract algebra, specifically the theory of Lie algebras, Serre's theorem states: given a root system , there exists a finite-dimensional semisimple Lie algebra whose root system is the given .

<span class="mw-page-title-main">Representation theory of semisimple Lie algebras</span>

In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.

References

Citations

  1. 1 2 Procesi 2007 , Ch. 6, § 1.1, Definition 1 (ii).
  2. Procesi 2007 , Ch. 6, § 2.1.
  3. Anderson & Fuller 1992, Proposition 9.4.
  4. Anderson & Fuller 1992 , Theorem 9.6.
  5. Anderson & Fuller 1992 , Lemma 9.2.
  6. 1 2 Fulton & Harris 1991 , § 9.3. A
  7. Hall 2015 , Theorem 4.28
  8. Fulton & Harris 1991, Corollary 1.6.
  9. Serre 1977, Theorem 2.
  10. Hall 2015 Theorem 10.9
  11. Jacobson 1989 , § 3.5. Exercise 4.
  12. Artin 1999 , Ch. V, § 14.
  13. Fulton & Harris 1991 , just after Corollary 1.6.
  14. Serre 1977 , § 1.4. remark
  15. 1 2 3 Procesi 2007 , Ch. 6, § 2.3.
  16. 1 2 Fulton & Harris 1991 , Proposition 1.8.
  17. Fulton & Harris 1991 , § 2.3.
  18. Fulton & Harris 1991 , § 2.1. Definition
  19. Serre 1977 , § 2.3. Theorem 3 and § 4.3.
  20. Serre 1977 , § 2.6. Theorem 8 (i)
  21. Procesi 2007 , Ch. 8, Theorem 3.2.
  22. Serre 1977 , § 2.4. Corollary 1 to Proposition 5
  23. Procesi 2007 , Ch. 8, § 3.3.
  24. 1 2 Hall, Brian C. (2013). "Angular Momentum and Spin". Quantum Theory for Mathematicians. Graduate Texts in Mathematics. Vol. 267. Springer. pp. 367–392. ISBN   978-1461471158.
  25. Klimyk, A. U.; Gavrilik, A. M. (1979). "Representation matrix elements and Clebsch–Gordan coefficients of the semisimple Lie groups". Journal of Mathematical Physics. 20 (1624): 1624–1642. Bibcode:1979JMP....20.1624K. doi:10.1063/1.524268.

Sources