Set notation

Last updated

Sets are fundamental objects in mathematics. Intuitively, a set is merely a collection of elements or members. There are various conventions for textually denoting sets. In any particular situation, an author typically chooses from among these conventions depending on which properties of the set are most relevant to the immediate context or on which perspective is most useful.

Set (mathematics) Fundamental mathematical concept related to the notions of belonging or inclusion

In mathematics, a set is a well-defined collection of distinct objects, considered as an object in its own right. For example, the numbers 2, 4, and 6 are distinct objects when considered separately, but when they are considered collectively they form a single set of size three, written {2, 4, 6}. The concept of a set is one of the most fundamental in mathematics. Developed at the end of the 19th century, set theory is now a ubiquitous part of mathematics, and can be used as a foundation from which nearly all of mathematics can be derived.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure (algebra), space (geometry), and change. It has no generally accepted definition.

In mathematics, an element, or member, of a set is any one of the distinct objects that make up that set.

Contents

Denoting a set as an object

Where it is desirable to refer to a set as an indivisible entity, one typically denotes it by a single capital letter. In referring to an arbitrary, generic set, a typical notational choice is S. When several sets are being discussed simultaneously, they are often denoted by the first few capitals: A, B, C, and so forth. By convention, particular symbols are reserved for the most important sets of numbers:

empty set (also or or {} are common)
Nnatural numbers
Zintegers (from Zahl, German for number ).
Qrational numbers (from quotient )
Rreal numbers
Ccomplex numbers

Some authors use the blackboard bold font for these particular sets (, , etc.). This usage is widely accepted in handwriting, but some mathematicians, and such experts on mathematical typography as Donald Knuth, advise against its use in print. [1]

Blackboard bold is a typeface style that is often used for certain symbols in mathematical texts, in which certain lines of the symbol are doubled. The symbols usually denote number sets. One way of producing blackboard bold is to double-strike a character with a small offset on a typewriter. Thus they are also referred to as double struck.

Donald Knuth American computer scientist (born 1938)

Donald Ervin Knuth is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer science.

Focusing on the membership of a set

In many contexts one is interested more in the elements that constitute the set than in the single entity comprising those elements, for instance where stating an extensional definition of the set. Here the elements, whether expressed discretely or in some aggregate manner, are enclosed in braces.

The simplest notational approach of this type, which is feasible only for fairly small sets, is to enumerate the elements exhaustively. Thus the set of suits in a standard deck of playing cards is denoted by {♠, , , ♣} and the set of even prime numbers is denoted by {2}. This approach also provides the notation {} for the empty set.

The semantics of the term set imposes certain syntactic constraints on these notations. The only information that is fundamental for a set is which particular objects are, or are not, elements. As a result, the order in which elements appear in an enumeration is irrelevant: {π, 6, 1/2} and {1/2, π, 6} are two enumerations of the same set. Likewise, repeated mention of an element is also irrelevant, so {1, 2, 2, 3, 3, 3} = {1, 2, 3}. To deal with collections for which members' multiplicity is significant, there is a generalization of sets called multisets .

Semantics is the linguistic and philosophical study of meaning in language, programming languages, formal logics, and semiotics. It is concerned with the relationship between signifiers—like words, phrases, signs, and symbols—and what they stand for in reality, their denotation.

In mathematics, a multiset is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The positive integer number of instances, given for each element is called the multiplicity of this element in the multiset. As a consequence, an infinite number of multisets exist, which contain only elements a and b, but vary by the multiplicity of their elements:

A variant of this explicitly exhaustive enumeration uses ranges of elements and features the ellipsis. For example, the set of the first ten natural numbers can be written as {1, ..., 10}. Here, of course, the ellipsis means "and so forth." Wherever an ellipsis is used to denote a range, it is punctuated as though it were an element of the set. If either extreme of a range is indeterminate, it may be denoted by a mathematical expression giving a formula to compute it. As an example, if n is known from context to be a positive integer, then the set of the first n perfect squares may be denoted by {1, 4, ..., n2}.

An ellipsis is a series of dots that usually indicates an intentional omission of a word, sentence, or whole section from a text without altering its original meaning.

In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it can be written as 3 × 3.

In general, if is a natural number, then denotes the set . A subtle special is , in which is the empty set .

Some infinite sets, too, can be represented in this way. An example is denoting the set of natural numbers (for which one notation described above is N) by {1, 2, 3, ...}. In cases where the infinitely repeating pattern is not obvious, one can insert an expression to represent a generic element of the set, as with {0, 1, 3, ..., k(k-1)/2, ...}.

A more powerful mechanism for denoting a set in terms of its elements is set-builder notation. Here the general pattern is {x : P(x)}, which denotes the set of all elements x (from some universal set) for which the assertion P(x) about x is true. For example, when understood as a set of points, the circle with radius r and center (a, b), may be denoted as {(u, v) : (ua)2 + (v-b)2 = r2}.

A notable exception to the braces notation is used to express intervals on the real line. It makes use of the fact that any such interval is completely determined by its left and right endpoints: the unit interval, for instance, is the set of reals between 0 and 1 (inclusive). The convention for denoting intervals uses brackets and parentheses, depending as the corresponding endpoint is included in or excluded from the set, respectively. Thus the set of reals with absolute value less than one is denoted by (−1, 1) — This is very different from the ordered pair with first entry −1 and second entry 1. As other examples, the set of reals x that satisfy 2 < x ≤ 5 is denoted by (2, 5], and the set of nonnegative reals is denoted by [0, ∞).

Metaphor in denoting sets

Since so much of mathematics consists in discovering and exploiting patterns, it is perhaps not surprising that there should have arisen various set-denotational conventions that strike practitioners as obvious or natural—if sometimes only once the pattern has been pointed out.

One class consists of those notations deriving the symbol for a set from the algebraic form of a representative element of the set. As an example, consider the set of even numbers. Since a number b is even precisely if there exists some integer a such that b = 2a, the following variation on set-builder notation could be used to denote this set: {2a : aZ} (compare this with the formal set-builder notation: {bZ : ∃ aZ: b = 2a}). Alternatively, a single symbol for the set of even numbers is 2Z. Likewise, since any odd number must have the form 2a + 1 for some integer a, the set of odd numbers may be denoted 2Z+1.

A second class is based on a strong logical relationship between a set and a particular integer. One example is the bracket notation, in which the set {1, ..., n} of the first n positive integers is denoted by [n]. (As a related point, when endowed with the standard less-than-or-equal relation , the set [n] yields the poset denoted by n.) Another example arises from modular arithmetic, where equivalence classes are denoted by , which may be understood to represent the set of integers that leave remainder a on division by n. Thus yet another notation for the set of even numbers is .

Another set-denotational convention that relies on metaphor comes from enumerative combinatorics. It derives a symbol for a set S from an expression for the set's cardinality, or size, |S|. Perhaps the simplest and best known example is the Cartesian product of sets A and B, which is the set {(a, b) : aA, bB}. Since, in this set, every element of A gets paired exactly once with every element of B, its cardinality is |A| × |B|. For this reason, the set is denoted by A×B. In fact, that same fact about its cardinality is why this set is called a product.

There are many other examples of this convention. One is the set of functions from set A to set B. When A and B are finite, specifying any such function amounts to choosing for each element of A which element of B should be its image. So, the number of these functions is |B||A|. Thus, one denotes the set of all functions from A to B as BA. Another example is the power set of a set S, which, having cardinality 2|S|, is denoted by 2S. Note, though, that since any subset of S may be seen as a function assigning to each element of S one or the other element of {include, exclude}, the notation 2S may be seen as a special case of BA. The cardinality metaphor has also been used to derive from the standard notation for binomial coefficients the notation for the set of all k-element subsets of a set X. An alternative notation to denote the all -subsets of is

An example where this cardinality-based convention appears not to have been used yet is X! to denote the set of all permutations of a set X. Since it is usually seen as the underlying set of a symmetric group, this set is typically denoted by a symbol for the group itself, either SX or Sym(X).

Other conventions

Further conventions are also sometimes seen, including one based on relations. For a relation R on a set S, one may denote the set of objects related by R to some element x of S by SR(x). So from the notation | for the divides relation of number theory, one may denote the set of factors of an integer n by Z|(n). Similarly, a subset of X is a principal lower set of a poset (X, ≤) precisely if it can be denoted by X(x) for some x in X. And since ~ is the symbol for the adjacency relation, the subset of a collection W of vertices of a graph that includes exactly those adjacent to a vertex v (namely, the intersection of W with the open neighborhood of v) may be denoted by W~(v).

See also

Related Research Articles

Naïve set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike axiomatic set theories, which are defined using formal logic, naïve set theory is defined informally, in natural language. It describes the aspects of mathematical sets familiar in discrete mathematics, and suffices for the everyday use of set theory concepts in contemporary mathematics.

In mathematics, a countable set is a set with the same cardinality as some subset of the set of natural numbers. A countable set is either a finite set or a countably infinite set. Whether finite or infinite, the elements of a countable set can always be counted one at a time and, although the counting may never finish, every element of the set is associated with a unique natural number.

Empty set set containing no elements

In mathematics, the empty set is the unique set having no elements; its size or cardinality is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set; in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set.

Integer Number in {..., –2, –1, 0, 1, 2, ...}

An integer is a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5+1/2, and 2 are not.

Number Mathematical object used to count, label, and measure

A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. A written symbol like "5" that represents a number is called a numeral. A numeral system is an organized way to write and manipulate this type of symbol, for example the Hindu–Arabic numeral system allows combinations of numerical digits like "5" and "0" to represent larger numbers like 50. A numeral in linguistics can refer to a symbol like 5, the words or phrase that names a number, like "five hundred", or other words that mean a specific number, like "dozen". In addition to their use in counting and measuring, numerals are often used for labels, for ordering, and for codes. In common usage, number may refer to a symbol, a word or phrase, or the mathematical object.

Power set (of any set S) set of all subsets of S, including the empty set and S itself

In mathematics, the power set of any set S is the set of all subsets of S, including the empty set and S itself, variously denoted as P(S), 𝒫(S), ℘(S), P(S), ℙ(S), or, identifying the powerset of S with the set of all functions from S to a given set of two elements, 2S. In axiomatic set theory, the existence of the power set of any set is postulated by the axiom of power set.

In mathematics, a set A is a subset of a set B, or equivalently B is a superset of A, if A is contained in B. That is, all elements of A are also elements of B. The relationship of one set being a subset of another is called inclusion or sometimes containment. A is a subset of B may also be expressed as B includes A, or A is included in B.

Sequence ordered list of elements; function with natural numbers as domain

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and order matters. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers or the set of the first n natural numbers.

Ring (mathematics) Algebraic structure with two binary operations

In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.

In mathematics, a (real) interval is a set of real numbers lying between two numbers, the extremities of the interval. For example, the set of numbers x satisfying 0 ≤ x ≤ 1 is an interval which contains 0, 1 and all numbers in between. Other examples of intervals are the set of real numbers , the set of negative real numbers, and the empty set.

Exponentiation Mathematical operation

Exponentiation is a mathematical operation, written as bn, involving two numbers, the baseb and the exponent or powern. When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

Function (mathematics) Mapping that associates a single output value to each input

In mathematics, a function is a relation between sets that associates to every element of a first set exactly one element of the second set. Typical examples are functions from integers to integers or from the real numbers to real numbers.

An enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration depend on the discipline of study and the context of a given problem.

In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements or stating the properties that its members must satisfy.

In mathematics, the lexicographic or lexicographical order is a generalization of the way words are alphabetically ordered based on the alphabetical order of their component letters. This generalization consists primarily in defining a total order over the sequences of elements of a finite totally ordered set, often called an alphabet.

In mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a family of real numbers, indexed by the set of integers is a collection of real numbers, where a given function selects for each integer one real number.

References

  1. Krantz, S., Handbook of Typography for the Mathematical Sciences, Chapman & Hall/CRC, Boca Raton, Florida, 2001, p. 35.