Shahn Majid

Last updated

Shahn Majid
ShahnMajidinCambridge1998.jpg
Shahn Majid in 1998
Born1960 (1960)
Patna, India
NationalityBritish
Alma mater University of Cambridge
Harvard University
Known for Quantum groups, quantum spacetime, braided Hopf algebras, octonions
AwardsBleuler Medal
Scientific career
Fields Physicist, mathematician
Institutions Queen Mary, University of London
Doctoral advisor Clifford Taubes
Arthur Jaffe

Shahn Majid (born 1960 in Patna, Bihar, India) is an English pure mathematician and theoretical physicist, trained at Cambridge University and Harvard University and, since 2001, a professor of mathematics at the School of Mathematical Sciences, Queen Mary, University of London.

Contents

Majid is best known for his pioneering work on quantum groups where he introduced one of the two main known classes of these objects and worked on all aspects of their theory. His 1995 textbook Foundations of Quantum Group Theory is a standard text still used by researchers today. He also pioneered a quantum groups approach to noncommutative geometry and the use of such methods as a route to quantum gravity, [1] [2] leading in 1994 to the first model with testable predictions of quantum spacetime. He is also known for a range of results in algebra and category theory, notably for his theory of braided Hopf algebras and for a new view of the octonions. Although many regard Majid as a pure mathematician, his motivation and early training was in theoretical physics, and pure mathematics merely represents a path in his lifelong search for the 'true nature of physical reality'. [3] [4]

In 2008, he edited and co-authored an ambitious book of essays On Space and Time along with Alain Connes, Roger Penrose, John Polkinghorne, Michal Heller and Andrew Taylor, in which the authors aim to expose the frontier of scientific research on the small and large scale structure of the Universe to a general but scientifically interested audience.

Personal life

At age five, he moved with his family from India to the UK, where his father went on to become a noted orthopaedic surgeon and his mother a primary school teacher and a published poet. He grew up in Hampstead, London, where he now lives, is married to Konstanze Rietsch, a University of Vienna and MIT trained pure mathematician based at King's College London, and has two children.

Education and career

He did his B.A. and Part III diploma at the University of Cambridge following the Mathematical Tripos and based at Emmanuel College, Cambridge. In 1983, he was awarded a Herschel Smith Scholarship, which took him to Harvard University. At Harvard, he was a tutor at Eliot House, while engaged in his PhD jointly between the physics and pure mathematics departments, under Arthur Jaffe and Clifford Taubes respectively. Armed with his PhD in 1988, his first job was as a 1-year postdoc at the University of Swansea, before moving on a Drapers Fellowship to Pembroke College, Cambridge, where he remained a Fellow until his move to Queen Mary in 1999. The 10 years of research based in Cambridge University, DAMTP included two years as a visiting scholar back at Harvard and a variety of research fellowships including a Royal Society University Research Fellowship. In 1993, he was awarded a one-time Konrad Bleuler Medal by an international conference. He has been visiting professor at the Perimeter Institute, Oxford University, and Cambridge University, as well as a principal organiser along with Alain Connes and Albert Schwarz of a 6-month programme on noncommutative geometry at the Isaac Newton Institute in 2006. In 2009, he was a Leverhulme Trust Senior Research Fellow.

Scientific works

Majid wrote several early papers before his more established PhD work. [5] [6] These included work on gauge fields as Fourier transform on the space of loops on a manifold and their quantisation as noncommutative geometry, a novel 'infinite spin' limit for handling infinities in quantum field theory and an infinitesimal explanation of quark confinement.

His 1988 PhD thesis introduced a 'bicrossproduct' type of quantum group at a time when few such objects were known. Halfway through his PhD research Vladimir Drinfeld and Michio Jimbo found another and more popular class of these objects, but the bicrossproduct ones have had a resurgence of interest in recent years. Majid rapidly established himself as a leading authority on all types of quantum groups and developed a distinctive Hopf algebraic approach to them, including well-known results on the quantum double and a duality construction for a monoidal category. His 1998 lectures on the topic in the Mathematical Tripos of the University of Cambridge were published by the London Mathematical Society.

In the 1990s, Majid introduced the theory of braided groups or braided Hopf algebras as the true objects underlying -deformations. He proved the main theorems in the field of 'transmutation' and 'bosonisation' and constructed the first and still main examples of the theory, including quantum planes as an additive braided groups. Other well-known work includes a picture of the octonions as associative in a certain symmetric monoidal category.

Also in the 1990s he pioneered the theory and first models of noncommutative or quantum spacetimes. The 1994 Majid-Ruegg model in particular turned out to be testable by data now being collected by the GLAST-Fermi gamma ray space telescope. Whether his model is confirmed or not, the most important thing, according to Majid, is that unlike much of modern theoretical physics, it is testable. Recent works include theorems pointing to a new field of nonassociative geometry, noncommutative gravity and (2+1)-dimensional quantum gravity.

A philosophy of Relative Realism

"Nature does not necessarily use the maths already in maths books, hence theoretical physicists should be prepared to explore ... all of pure mathematics"

This quote from Majid's On Space and Time was presented as reply to physicists who attack mathematicians while turning to maths books for structures to use in their theories, as if mathematics is a resource rather than part of the creative process. The subtle interplay between the creativity of pure mathematics and the fact-driven agenda of physics form the basis of a general philosophy of Relative Realism in which Majid argues that the nature of physical reality is not fundamentally different from the way that topics in pure mathematics are on the one hand created by definitions and on the other hand 'out there' waiting to be invented. Majid gives the more everyday example of the way that the reality experienced in a game of chess is created by the rules of chess and the choice to abide by them while at the same time, on another level, the rules of chess were themselves a reality waiting to be discovered by those seeking to invent board games. The general picture leads to a dualism between experiment and theory or 'principle of representation-theoretic self-duality' in which Majid argues that 'the search for the ultimate theory of physics is the search for self-dual structures in a self-dual category'. Although not accepted by professional philosophers of science, the philosophy has provided a point of view behind most of his research work. [7]

Notes

  1. Majid, Shahn (1988), "Hopf algebras for physics at the Planck scale", Classical and Quantum Gravity, 5 (12): 1587–1607, Bibcode:1988CQGra...5.1587M, CiteSeerX   10.1.1.125.6178 , doi:10.1088/0264-9381/5/12/010, S2CID   250857702
  2. Majid, S. (1990), "Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction", J. Algebra, 130: 17–64, doi: 10.1016/0021-8693(90)90099-a
  3. Majid, S. (1991), "Principle of Representation-Theoretic Self-Duality", Physics Essays, 4 (3): 395–405, Bibcode:1991PhyEs...4..395M, doi:10.4006/1.3028923
  4. See his personal bio page
  5. See a full statement of research with references
  6. Full list of publications
  7. See Chapter 2 of On Space and Time

Publications

Numerous research publications and review articles, and the following three books:

Related Research Articles

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

<span class="mw-page-title-main">Edward Witten</span> American theoretical physicist

Edward Witten is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, quantum gravity, supersymmetric quantum field theories, and other areas of mathematical physics. Witten's work has also significantly impacted pure mathematics. In 1990, he became the first physicist to be awarded a Fields Medal by the International Mathematical Union, for his mathematical insights in physics, such as his 1981 proof of the positive energy theorem in general relativity, and his interpretation of the Jones invariants of knots as Feynman integrals. He is considered the practical founder of M-theory.

Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions. A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which does not always equal ; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

<span class="mw-page-title-main">George Mackey</span>

George Whitelaw Mackey was an American mathematician known for his contributions to quantum logic, representation theory, and noncommutative geometry.

In theoretical particle physics, the non-commutative Standard Model, is a model based on noncommutative geometry that unifies a modified form of general relativity with the Standard Model.

<span class="mw-page-title-main">André Joyal</span> Canadian mathematician

André Joyal is a professor of mathematics at the Université du Québec à Montréal who works on category theory. He was a member of the School of Mathematics at the Institute for Advanced Study in 2013, where he was invited to join the Special Year on Univalent Foundations of Mathematics.

<span class="mw-page-title-main">Victor Ginzburg</span> Russian American mathematician (born 1957)

Victor Ginzburg is a Russian American mathematician who works in representation theory and in noncommutative geometry. He is known for his contributions to geometric representation theory, especially, for his works on representations of quantum groups and Hecke algebras, and on the geometric Langlands program. He is currently a Professor of Mathematics at the University of Chicago.

In mathematics, especially (higher) category theory, higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra.

In mathematical physics, the concept of quantum spacetime is a generalization of the usual concept of spacetime in which some variables that ordinarily commute are assumed not to commute and form a different Lie algebra. The choice of that algebra still varies from theory to theory. As a result of this change some variables that are usually continuous may become discrete. Often only such discrete variables are called "quantized"; usage varies.

<span class="mw-page-title-main">Noncommutative algebraic geometry</span>

Noncommutative algebraic geometry is a branch of mathematics, and more specifically a direction in noncommutative geometry, that studies the geometric properties of formal duals of non-commutative algebraic objects such as rings as well as geometric objects derived from them.

<span class="mw-page-title-main">Jürg Fröhlich</span> Swiss mathematician and theoretical physicist

Jürg Martin Fröhlich is a Swiss mathematician and theoretical physicist. He is best known for introducing rigorous techniques for the analysis of statistical mechanics models, in particular continuous symmetry breaking, and for pioneering the study of topological phases of matter using low-energy effective field theories.

<span class="mw-page-title-main">Matilde Marcolli</span> Italian mathematician and physicist

Matilde Marcolli is an Italian and American mathematical physicist. She has conducted research work in areas of mathematics and theoretical physics; obtained the Heinz Maier-Leibnitz-Preis of the Deutsche Forschungsgemeinschaft, and the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. Marcolli has authored and edited numerous books in the field. She is currently the Robert F. Christy Professor of Mathematics and Computing and Mathematical Sciences at the California Institute of Technology.

<span class="mw-page-title-main">Kalyan Bidhan Sinha</span> Indian mathematician

Kalyan Bidhan Sinha is an Indian mathematician. He is a professor at the Jawaharlal Nehru Centre for Advanced Scientific Research, and Professor Emeritus for life of the Indian Statistical Institute.

Ali H. Chamseddine is a Lebanese physicist known for his contributions to particle physics, general relativity and mathematical physics. As of 2013, Chamseddine is a physics Professor at the American University of Beirut and the Institut des hautes études scientifiques.

<span class="mw-page-title-main">Ralph Kaufmann</span> German mathematician

Ralph Martin Kaufmann is a German mathematician working in the United States.

<span class="mw-page-title-main">Sergio Doplicher</span> Italian mathematical physicist

Sergio Doplicher is an Italian mathematical physicist, who mainly dealt with the mathematical foundations of quantum field theory and quantum gravity.

Henri Moscovici is a Romanian-American mathematician, specializing in non-commutative geometry and global analysis.