Solar module quality assurance

Last updated

Solar module quality assurance involves testing and evaluating solar cells and Solar Panels to ensure the quality requirements of them are met. Solar modules (or panels) are expected to have a long service life between 20 and 40 years. [1] They should continually and reliably convey and deliver the power anticipated. modules presented to a wide exhibit of climate conditions alongside use in various temperatures. Solar modules can be tested through a combination of physical tests, laboratory studies, and numerical analyses. [2] Furthermore, solar modules need to be assessed throughout the different stages of their life cycle. Various companies such as Southern Research Energy & Environment, SGS Consumer Testing Services, TÜV Rheinland, Sinovoltaics, Clean Energy Associates (CEA), CSA Solar International and Enertis provide services in solar module quality assurance."The implementation of consistent traceable and stable manufacturing processes becomes mandatory to safeguard and ensure the quality of the PV Modules" [3]

Contents

Stages of testing

The lifecycle stages of testing solar modules can include: the Conceptual phase, manufacturing phase, transportation and installation, commissioning phase, and the in-service phase. Depending on the test phase, different test principles may apply.

Conceptual phase

The first stage can involve design verification where the expected output of the module is tested through computer simulation. Further, the modules ability to withstand natural environment conditions such as temperature, rain, hail, snow, corrosion, dust, lightning, horizon and near-shadow effects is tested. The layout for design and construction of the module and the quality of components and installation can also be tested at this stage.

Manufacturing phase

Inspecting manufacturers of components is carried through visitation. The inspection can include assembly checks, material testing supervision and Non Destructive Testing (NDT). Certification is carried our according to ANSI/UL1703, IEC 17025, IEC 61215, IEC 61646, IEC 61701 and IEC 61730-1/-2.

Transportation and installation phase

Inspections include pre-dispatch inspection, dimensional control, visual control, and damage control. Documentation and certificates should also be reviewed.

Commissioning phase and in-service phase

Solar module specialists will ensure that the production has followed correct procedure and ensure there is a save start up. The in-service phase involves regular inspections of the solar modules to confirm they are performing.

See also

Related Research Articles

<span class="mw-page-title-main">Photovoltaics</span> Method to produce electricity from solar radiation

Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors.

<span class="mw-page-title-main">Solar inverter</span> Converts output of a photovoltaic panel into a utility frequency alternating current

A solar inverter or PV inverter, is a type of power inverter which converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical balance of system (BOS)–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar power inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

A pyranometer is a type of actinometer used for measuring solar irradiance on a planar surface and it is designed to measure the solar radiation flux density (W/m2) from the hemisphere above within a wavelength range 0.3 μm to 3 μm. The name pyranometer stems from the Greek words πῦρ (pyr), meaning "fire", and ἄνω (ano), meaning "above, sky".

<span class="mw-page-title-main">National Renewable Energy Laboratory</span> United States national laboratory

The National Renewable Energy Laboratory (NREL) in the US specializes in the research and development of renewable energy, energy efficiency, energy systems integration, and sustainable transportation. NREL is a federally funded research and development center sponsored by the Department of Energy and operated by the Alliance for Sustainable Energy, a joint venture between MRIGlobal and Battelle. Located in Golden, Colorado, NREL is home to the National Center for Photovoltaics, the National Bioenergy Center, and the National Wind Technology Center.

<span class="mw-page-title-main">Solar panel</span> Assembly of photovoltaic cells used to generate electrical power

A solar cell panel, solar electric panel, photo-voltaic (PV) module or solar panel is an assembly of photo-voltaic cells mounted in a framework for installation. Solar panels use sunlight as a source of energy to generate direct current electricity. A collection of PV modules is called a PV panel, and a system of PV panels is called an array. Arrays of a photovoltaic system supply solar electricity to electrical equipment.

Moser Baer was an Indian multinational manufacturer of optical discs, storage devices, CDs, DVDs, based in New Delhi. The company was present in over 100 countries, serviced through 15 marketing offices and representatives, and had tie-ups with other optical media storage manufacturers. Its products were manufactured at its three plants in New Delhi, which employed over 8,000 people. The company has subsidiaries that manufacture photovoltaic cells and modules using crystalline silicon and thin film technologies.

Stand-alone power system

A stand-alone power system, also known as remote area power supply (RAPS), is an off-the-grid electricity system for locations that are not fitted with an electricity distribution system. Typical SAPS include one or more methods of electricity generation, energy storage, and regulation.

<span class="mw-page-title-main">Yingli</span> Subregion of Asia

Yingli, formally Yingli Green Energy Holding Company Limited -. Yingli Green Energy Holding Company Limited, known as "Yingli Solar," is a solar panel manufacturer. Yingli Green Energy's manufacturing covers the photovoltaic value chain from ingot casting and wafering through solar cell production and solar panel assembly. Yingli's photovoltaic module capacity is 4 GWs.

<span class="mw-page-title-main">Photovoltaic system</span> Power system designed to supply usable electric power from solar energy

A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery.

The nominal power is the nameplate capacity of photovoltaic (PV) devices, such as solar cells, modules and systems, and is determined by measuring the electric current and voltage in a circuit, while varying the resistance under precisely defined conditions. The nominal power is important for designing an installation in order to correctly dimension its cabling and converters.

Cadmium telluride photovoltaics Type of solar power cell

Cadmium telluride (CdTe) photovoltaics is a photovoltaic (PV) technology based on the use of cadmium telluride in a thin semiconductor layer designed to absorb and convert sunlight into electricity. Cadmium telluride PV is the only thin film technology with lower costs than conventional solar cells made of crystalline silicon in multi-kilowatt systems.

Photovoltaic thermal hybrid solar collector

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

Copper indium gallium selenide solar cell

A copper indium gallium selenide solar cell is a thin-film solar cell used to convert sunlight into electric power. It is manufactured by depositing a thin layer of copper indium gallium selenide solution on glass or plastic backing, along with electrodes on the front and back to collect current. Because the material has a high absorption coefficient and strongly absorbs sunlight, a much thinner film is required than of other semiconductor materials.

IBC Solar is a Germany based photovoltaics specialist, offering solutions for sunlight-generated power. The company, established in 1982, offers tailored solutions, project management, consultation and planning of the photovoltaic installation.

Concentrator photovoltaics Use of mirror or lens assemblies to generate current from multi-junction solar cells

Concentrator photovoltaics (CPV) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or curved mirrors to focus sunlight onto small, highly efficient, multi-junction (MJ) solar cells. In addition, CPV systems often use solar trackers and sometimes a cooling system to further increase their efficiency.

Grid-connected photovoltaic power system

A grid-connected photovoltaic system, or grid-connected PV system is an electricity generating solar PV power system that is connected to the utility grid. A grid-connected PV system consists of solar panels, one or several inverters, a power conditioning unit and grid connection equipment. They range from small residential and commercial rooftop systems to large utility-scale solar power stations. When conditions are right, the grid-connected PV system supplies the excess power, beyond consumption by the connected load, to the utility grid.

The Fraunhofer Institute for Solar Energy Systems ISE is an institute of the Fraunhofer-Gesellschaft. Located in Freiburg, Germany, The Institute performs applied scientific and engineering research and development for all areas of solar energy. Fraunhofer ISE has three external branches in Germany which carry out work on solar cell and semiconductor material development: the Laboratory and Service Center (LSC) in Gelsenkirchen, the Technology Center of Semiconductor Materials (THM) in Freiberg, and the Fraunhofer Center for Silicon Photovoltaics (CSP) in Halle. Since 2006, Prof. Dr. Eicke R. Weber is the director of Fraunhofer ISE. With over 1,100 employees, Fraunhofer ISE is the largest institute for applied solar energy research in Europe. The 2012 Operational Budget including investments is 74.3 million euro.

Photovoltaic system performance

Photovoltaic system performance is a function of the climatic conditions, the equipment used and the system configuration. PV performance can be measured as the ratio of actual solar PV system output vs expected values, the measurement being essential for proper solar PV facility's operation and maintenance. The primary energy input is the global light irradiance in the plane of the solar arrays, and this in turn is a combination of the direct and the diffuse radiation.

<span class="mw-page-title-main">Photovoltaic module analysis techniques</span>

Multiple different photovoltaic module analysis techniques are available and necessary for the inspection of photovoltaic (PV) modules, the detection of occurring degradation and the analysis of cell properties.

References

  1. Dickie, P.M. (1999). Regional Workshop on Solar Power Generation Using Photovoltaic Technology. DIANE publishing. p. 120. ISBN   9780788182648.
  2. Hough, T.P. (2006). Trends in solar energy research. Nova. p. 98. ISBN   9781594548666.
  3. Parra, Dr. Vicente / Dr. Ruperto Gómez (September 2018). "Implementing risk mitigation strategies through module factory and production inspections". PV Tech. 16: 25–28.