This article needs additional citations for verification .(March 2020) |
A solenoid voltmeter is a specific type of voltmeter electricians use to test electrical power circuits. [1] It uses a solenoid coil to attract a spring-loaded plunger; the movement of the plunger is calibrated in terms of approximate voltage. It is more rugged than a D'arsonval movement, but neither as sensitive nor as precise.
Wiggy is the registered trademark for a common solenoid voltmeter used in North America derived from a device patent assigned to the Wigginton Company, US patent number 1,538,906. [2]
Rather than using a D'Arsonval movement or digital electronics, the solenoid voltmeter simply uses a spring-loaded solenoid carrying a pointer (it might also be described as a form of moving iron meter). Greater voltage creates more magnetism pulling the solenoid's core in further against the spring loading, moving the pointer. A short scale converts the pointer's movement into the voltage reading. [3] Solenoid voltmeters usually have a scale on each side of the pointer; one is calibrated for alternating current and one is calibrated for direct current. Only one "range" is provided and it usually extends from zero to about 600 volts.
A small permanent magnet rotor is usually mounted at the top of the meter. For DC, this magnet flips one way or the other, indicating by the exposed color (red or black) which lead is connected to positive. For AC, the rotor simply vibrates, indicating that the meter is connected to an AC circuit. Another form of tester uses a miniature neon lamp; the negative electrode glows, indicating polarity on DC circuits, or both electrodes glow, indicating AC.
Models made by some manufacturers include continuity test lights, which are energized by a battery within the tester. This is particularly advantageous when testing, for example, fuses in live circuits, since no switching is required to change from continuity mode to voltage detecting mode.
Solenoid voltmeters are extremely rugged and not very susceptible to damage through either rough handling or electrical overload, compared with more delicate but more precise instruments of the moving-coil D'arsonval type
For "go/no go" testing, there is no need to read the scale as application of AC power creates a perceivable vibration and sound within the meter. This feature makes the tester very handy in noisy, poorly illuminated, or very bright surroundings. The meter can be felt, the more it jumps the higher the voltage.
Solenoid voltmeters draw appreciable current in operation. When testing power supply circuits, a high-impedance connection (that is, a nearly open-circuit fault such as a burned switch contact or wire joint) in the power path might still allow enough voltage/current through to register on a high-impedance digital voltmeter, but it probably can't actuate the solenoid voltmeter. For use with high impedance circuit applications, however, they are not so good, as they draw appreciable current and therefore alter the voltage being measured. They can be used to test residual-current devices (GFCIs) because the current drawn trips most RCDs when the solenoid voltmeter is connected between the live and earth conductors.
Some manufacturers include a continuity test lamp function in a solenoid meter; these use the same probes as the voltage test function. This feature is useful when testing the status of contacts in energized circuits. The continuity light displays if the contact is closed, and the solenoid voltmeter shows voltage presence if open (and energized).
In contrast to multimeters, solenoid voltmeters have no other built-in functions (such as the ability to act as an ammeter, ohmmeter, or capacitance meter); they are just simple, easy-to-use power voltmeters. Solenoid voltmeters are useless on low-voltage circuits (for example, 12 volt circuits). The basic range of the voltmeter starts at around 90V (AC or DC).
Solenoid voltmeters are not precise. For example, there would be no reliably perceptible difference in the reading between 220 VAC and 240 VAC.
They are meant for intermittent operation. They draw a moderate amount of power from the circuit under test and can overheat if used for continuous monitoring. [3]
The low impedance and low sensitivity of the tester may not show high-impedance connections to a voltage source, which can still source enough current to cause a shock hazard.
An ammeter is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit in which the current is to be measured. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured.
A relay is an electrically operated switch. It consists of a set of input terminals for a single or multiple control signals, and a set of operating contact terminals. The switch may have any number of contacts in multiple contact forms, such as make contacts, break contacts, or combinations thereof.
A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit.
A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely. Galvanometers work by deflecting a pointer in response to an electric current flowing through a coil in a constant magnetic field. The mechanism is also used as an actuator in applications such as hard disks.
A multimeter is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case can be used as a voltmeter, ohmmeter, and ammeter. Some feature the measurement of additional properties such as temperature and capacitance.
A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by current in excess of that which the equipment can safely carry (overcurrent). Its basic function is to interrupt current flow to protect equipment and to prevent fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.
Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipment is essential to any serious work on electronics systems.
In electrical engineering, a practical electric power source which is a linear circuit may, according to Thévenin's theorem, be represented as an ideal voltage source in series with an impedance. This impedance is termed the internal resistance of the source. When the power source delivers current, the measured voltage output is lower than the no-load voltage; the difference is the voltage drop caused by the internal resistance. The concept of internal resistance applies to all kinds of electrical sources and is useful for analyzing many types of circuits.
The wattmeter is an instrument for measuring the electric active power in watts of any given circuit. Electromagnetic wattmeters are used for measurement of utility frequency and audio frequency power; other types are required for radio frequency measurements.
Transistor testers are instruments for testing the electrical behavior of transistors and solid-state diodes.
A test light, test lamp, voltage tester, or mains tester is a piece of electronic test equipment used to determine the presence of electricity in a piece of equipment under test. A test light is simpler and less costly than a measuring instrument such as a multimeter, and often suffices for checking for the presence of voltage on a conductor. Properly designed test lights include features to protect the user from accidental electric shock. Non-contact test lights can detect voltage on insulated conductors.
A continuity tester is an item of electrical test equipment used to determine if an electrical path can be established between two points; that is if an electrical circuit can be made. The circuit under test is completely de-energized prior to connecting the apparatus.
A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include test prods, oscilloscope probes and current probes. A test probe is often supplied as a test lead, which includes the probe, cable and terminating connector.
A pogo pin or spring-loaded pin is a type of electrical connector mechanism that is used in many modern electronic applications and in the electronics testing industry. They are used for their improved durability over other electrical contacts, and the resilience of their electrical connection to mechanical shock and vibration.
Stray voltage is the occurrence of electrical potential between two objects that ideally should not have any voltage difference between them. Small voltages often exist between two grounded objects in separate locations by the normal current flow in the power system. Contact voltage is a better defined term when large voltage appear as a result of a fault. Contact voltage on the enclosure of electrical equipment can appear from a fault in the electrical power system, such as a failure of insulation.
In electrical engineering, electrical safety testing is essential to make sure electrical products and installations are safe. To meet this goal, governments and various technical bodies have developed electrical safety standards. All countries have their own electrical safety standards that must be complied with. To meet to these standards, electrical products and installations must pass electrical safety tests.
Electrostatic voltmeter can refer to an electrostatic charge meter, known also as surface DC voltmeter, or to a voltmeter to measure large electrical potentials, traditionally called electrostatic voltmeter.
A Megohmmeter or insulation resistance tester, is a special type of ohmmeter used to measure the electrical resistance of insulators. Insulating components, for example cable jackets, must be tested for their insulation strength at the time of commissioning and as part of maintenance of high voltage electrical equipment and installations.
An ESR meter is a two-terminal electronic measuring instrument designed and used primarily to measure the equivalent series resistance (ESR) of real capacitors; usually without the need to disconnect the capacitor from the circuit it is connected to. Other types of meters used for routine servicing, including normal capacitance meters, cannot be used to measure a capacitor's ESR, although combined meters are available that measure both ESR and out-of-circuit capacitance. A standard (DC) milliohmmeter or multimeter cannot be used to measure ESR, because a steady direct current cannot be passed through the capacitor. Most ESR meters can also be used to measure non-inductive low-value resistances, whether or not associated with a capacitor; this leads to several additional applications described below.
The purpose of a short-circuit test is to determine the series branch parameters of the equivalent circuit of a transformer.