Sonoma orogeny

Last updated

The Sonoma orogeny was a period of mountain building in western North America. The exact age and structure of the Sonoma orogeny is controversial. [1] [2] [3] The orogeny is generally thought to have occurred during the Permian / Triassic transition, around 250 million years ago, following the Late Devonian Antler orogeny. The Sonoma orogeny was one of a sequence of accretionary events along the Cordilleran margin, possibly caused by the closure of the basin between the island arc of Sonomia and the North American continent. Evidence of this event has been reported throughout western North America, but most distinctly in northwest Nevada. [4]

Contents

The orogeny was named by Silberling and Roberts, who identified it with the Havallah Formation, originally thought to date to the Pennsylvanian and Permian ages [5] but has since been revised to include rocks of Late Devonian and Mississippian age. [1] [6] Some geologists dispute whether convergent plate tectonics produced the Sonoma orogeny. [7]

Stratigraphy

The Havallah sequence is the informal name for sequence including the Havallah Formation and other related strata. [6] [8] The Havallah sequence is universally associated with the Sonoma orogeny, but units of the same age range and roughly the same lithic composition, along the western and northern margins of the Havallah, are also relevant. [7] These units include the Inskip Formation in the East Range [3] and a series of formations in the Hot Springs Range. [9] [10] These units consist of basalt, felsite, bedded chert, limestone, and detrital rocks ranging from conglomerate to argillite [11] that accumulated in a trough west of the Antler orogenic belt.

The Havallah sequence is underlain by the Golconda thrust, and is therefore a component of the Golconda allochthon. [12] Speed observed that there are no arc-derived sedimentary rocks in the Golconda allochthon. [13]

Theories

Dickinson expanded the reach of the Sonoma orogeny as follows: segments of accreted Permian island arcs, composed of volcanic and volcaniclastic strata and paired geotectonically with Sonoma accretionary prisms to the east, are present in the Klamath-Sierran region of the Cordilleran orogen to the south of volcanic cover in the Pacific Northwest. [14]

Burchfiel and Davis presented a detailed model relating the Sonoma orogeny to convergent plate tectonic processes. [15] They postulated an east-dipping subduction zone beneath a magmatic arc to the west of the continent. In this scheme, a back-arc basin floored by oceanic crust lay between the arc and the continent. The Sonoma orogeny involved closure of this basin and a process by which the blanket of oceanic sedimentary rocks (the Havallah sequence) was obducted onto the continental shelf via the Golconda thrust. To account for the absence of oceanic crust in the obducted rocks, Davis later proposed the unique concept that the Havallah was separated from the underlying oceanic crust by a process of subduction and obduction. [16] Silberling presented a model similar to that of Burchfiel and Davis [12]

Miller and others found that the Schoonover sequence, a northern correlative of the Havallah sequence, was compatible with a back-arc thrusting model for the Sonoma orogeny. [6]

Speed offered a distinctly different model involving a volcanic arc above a west-dipping subduction zone to the west of the continent. In this model, an expanse of oceanic crust subducted westward under the volcanic arc, causing the overlying sedimentary rocks of the Havallah sequence to be scraped off the descending plate and forced over the approaching continental slope. [17] Snyder and Brueckner supported the Speed model with detailed lithic descriptions of the Havallah. They interpreted the lithic composition of the Havallah to be the sedimentary floor of an extensive ocean basin. [11] Brueckner and Snyder expressed some uncertainty about the exact time of final emplacement of the allochthon, but emphasized that structures associated with the Sonoma orogeny had a long history from the middle Paleozoic to the Permian-Triassic periods. [2]

Controversy and new ideas

Stewart and others revisited the classic Havallah locality at China Mountain in the Tobin Range, making use of a large number of fossil collections. [1] This locality had been cited by Silberling and Roberts as displaying the best evidence for the existence of the Sonoma orogeny, having been tightly folded and thrust-faulted and overlain unconformably by the Triassic Koipato Formation. [5] However, according to Stewart and others, the Havallah at that location is not tightly folded but is composed of nearly homoclinal strata separated by numerous undated faults sub-parallel to bedding. Stewart and others also cast some doubt as to the nature of the contact with the overlying Koipato Formation indicating on their map of the area that it could be a fault.

In the East Range just to the west of China Mountain, Whitebread mapped the contact between strata of Permian age, at the top of the Havallah, and the base of the overlying Koipato as parallel, indicating a lack of evidence for an orogeny at the Permian-Triassic boundary. [3]

Ketner, in a complete reversal of the conventional concepts of the Sonoma orogeny, combined all similar deep-water Upper Devonian to Permian sequences in the area of the type Havallah sequence into a single genetic assemblage. [7] Ketner concluded that Paleozoic deposits were compressed in the Jurassic, with the east-verging Golconda thrust in the east, and west-verging thrusts in western parts of the depositional basin. [7] Ketner's work denied the oceanic origin of the Havallah and related sequences, eliminated the necessity for convergent plate tectonics and a far-traveled allochthon, established the age of the Golconda thrust as post-Triassic, and cast doubt on the very existence of the Sonoma orogeny.

Related Research Articles

Orogeny The formation of mountain ranges

Orogeny is the primary mechanism by which mountains are formed on continents. An orogeny is an event that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

Antler orogeny

The Antler orogeny was a tectonic event that began in the early Late Devonian with widespread effects continuing into the Mississippian and early Pennsylvanian. Most of the evidence for this event is in Nevada but the limits of its reach are unknown. A great volume of conglomeratic deposits of mainly Mississippian age in Nevada and adjacent areas testifies to the existence of an important tectonic event, and implies nearby areas of uplift and erosion, but the nature and cause of that event are uncertain and in dispute. Although it is known as an orogeny, some of the classic features of orogeny as commonly defined such as metamorphism, and granitic intrusives have not been linked to it. In spite of this, the event is universally designated as an orogeny and that practice is continued here. This article outlines what is known and unknown about the Antler orogeny and describes three current theories regarding its nature and origin.

The Nevadan orogeny occurred along the western margin of North America during the Middle Jurassic to Early Cretaceous time which is approximately from 155 Ma to 145 Ma. Throughout the duration of this orogeny there were at least two different kinds of orogenic processes occurring. During the early stages of orogenesis an "Andean type" continental magmatic arc developed due to subduction of the Farallon oceanic plate beneath the North American Plate. The latter stages of orogenesis, in contrast, saw multiple oceanic arc terranes accreted onto the western margin of North America in a "Cordilleran type" accretionary orogen. Deformation related to the accretion of these volcanic arc terranes is mostly limited to the western regions of the resulting mountain ranges and is absent from the eastern regions. In addition, the deformation experienced in these mountain ranges is mostly due to the Nevadan orogeny and not other external events such as the more recent Sevier and Laramide Orogenies. It is noted that the Klamath Mountains and the Sierra Nevada share similar stratigraphy indicating that they were both formed by the Nevadan orogeny. In comparison with other orogenic events, it appears that the Nevadan Orogeny occurred rather quickly taking only about 10 million years as compared to hundreds of millions of years for other orogenies around the world.

The Hunter-Bowen Orogeny was a significant arc accretion event in the Permian and Triassic periods affecting approximately 2,500 km of the Australian continental margin.

Cimmeria (continent) Ancient string of microcontinents that rifted from Gondwana

Cimmeria was an ancient continent, or, rather, a string of microcontinents or terranes, that rifted from Gondwana in the Southern Hemisphere and was accreted to Eurasia in the Northern Hemisphere. It consisted of parts of present-day Turkey, Iran, Afghanistan, Pakistan, Tibet, China, Myanmar, Thailand, and Malaysia. Cimmeria rifted from the Gondwanan shores of the Paleo-Tethys Ocean during the Carboniferous-earliest Permian and as the Neo-Tethys Ocean opened behind it, during the Permian, the Paleo-Tethys closed in front of it. Cimmeria rifted off Gondwana from east to west, from Australia to the eastern Mediterranean. It stretched across several latitudes and spanned a wide range of climatic zones.

Geology of Norway

The geology of Norway encompasses the history of Earth that can be interpreted by rock types found in Norway, and the associated sedimentological history of soils and rock types.

Laurentia A large continental craton that forms the ancient geological core of the North American continent

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and also the northwestern part of Scotland, known as the Hebridean Terrane. During other times in its past, Laurentia has been part of larger continents and supercontinents and itself consists of many smaller terranes assembled on a network of Early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

Geology of the Western Carpathians

The Western Carpathians are an arc-shaped mountain range, the northern branch of the Alpine-Himalayan fold and thrust system called the Alpide belt, which evolved during the Alpine orogeny. In particular, their pre-Cenozoic evolution is very similar to that of the Eastern Alps, and they constitute a transition between the Eastern Alps and the Eastern Carpathians.

Andean orogeny Ongoing mountain-forming process in South America

The Andean orogeny is an ongoing process of orogeny that began in the Early Jurassic and is responsible for the rise of the Andes mountains. The orogeny is driven by a reactivation of a long-lived subduction system along the western margin of South America. On a continental scale the Cretaceous and Oligocene were periods of re-arrangements in the orogeny. Locally the details of the nature of the orogeny varies depending on the segment and the geological period considered.

The Vinini Formation is a marine, deep-water, sedimentary deposit of Ordovician to Early Silurian age in Nevada, U.S.A. It is notable for its highly varied, mainly siliceous composition, its mineral deposits, and controversies surrounding both its depositional environment and structural history. The formation was named by Merriam and Anderson for an occurrence along Vinini Creek in the Roberts Mountains of central Nevada and that name is now used extensively in the State.

Geology of Iran

The main points that are discussed in the geology of Iran include the study of the geological and structural units or zones; stratigraphy; magmatism and igneous rocks; ophiolite series and ultramafic rocks; and orogenic events in Iran.

Lhasa terrane Fragment of crustal material that forms present-day southern Tibet

The Lhasa terrane is a terrane, or fragment of crustal material, sutured to the Eurasian Plate during the Cretaceous that forms present-day southern Tibet. It takes its name from the city of Lhasa in the Tibet Autonomous Region, China. The northern part may have originated in the East African Orogeny, while the southern part appears to have once been part of Australia. The two parts joined, were later attached to Asia, and then were impacted by the collision of the Indian Plate that formed the Himalayas.

Tectonic evolution of Patagonia

Patagonia comprises the southernmost region of South America, portions of which lie either side of the Argentina-Chile border. It has traditionally been described as the region south of the Rio Colorado, although the physiographic border has more recently been moved southward to the Huincul fault. The region's geologic border to the north is composed of the Rio de la Plata craton and several accreted terranes comprising the La Pampa province. The underlying basement rocks of the Patagonian region can be subdivided into two large massifs: the North Patagonian Massif and the Deseado Massif. These massifs are surrounded by sedimentary basins formed in the Mesozoic that underwent subsequent deformation during the Andean orogeny. Patagonia is known for their vast earthquakes and the damage.

Geology of Sweden

The geology of Sweden is the regional study of rocks, minerals, tectonics, natural resources and groundwater in the country. The oldest rocks in Sweden date to more than 2.5 billion years ago in the Precambrian. Complex orogeny mountain building events and other tectonic occurrences built up extensive metamorphic crystalline basement rock that often contains valuable metal deposits throughout much of the country. Metamorphism continued into the Paleozoic after the Snowball Earth glaciation as the continent Baltica collided with an island arc and then the continent Laurentia. Sedimentary rocks are most common in southern Sweden with thick sequences from the last 250 million years underlying Malmö and older marine sedimentary rocks forming the surface of Gotland.

The geology of Nevada began to form in the Proterozoic at the western margin of North America. Terranes accreted to the continent as a marine environment dominated the area through the Paleozoic and Mesozoic periods. Intense volcanism, the horst and graben landscape of the Basin and Range Province originating from the Farallon Plate, and both glaciers and valley lakes have played important roles in the region throughout the past 66 million years.

The geology of Greece is highly structurally complex due to its position at the junction between the European and African tectonic plates.

The geology of Iraq includes thick sequences of marine and continental sedimentary rocks over poorly understood basement rock, at the junction of the Arabian Plate, the Anatolian Plate, and the Iranian Plate.

Geology of Peru

The geology of Peru includes ancient Proterozoic rocks, Paleozoic and Mesozoic volcanic and sedimentary rocks, and numerous basins and the Andes Mountains formed in the Cenozoic.

The Golconda Thrust is a major oceanic terrane that was thrust over central and northern Nevada, North America, in possibly sometime between the Late Permian and the late Jurassic. It is considered equivalent to the Tobin thrust fault.

Junggar Basin

The Junggar Basin is one of the largest sedimentary basins in Northwest China. It is located in Xinjiang, and enclosed by the Tarbagatai Mountains of Kazakhstan in the northwest, the Altai Mountains of Mongolia in the northeast, and the Heavenly Mountains in the south. The geology of Junggar Basin mainly consists of sedimentary rocks underlain by igneous and metamorphic basement rocks. The basement of the basin was largely formed during the development of the Pangea supercontinent during complex tectonic events from Precambrian to late Paleozoic time. The basin developed as a series of foreland basins – in other words, basins developing immediately in front of growing mountain ranges – from Permian time to the Quaternary period. The basin's preserved sedimentary records show that the climate during the Mesozoic era was marked by a transition from humid to arid conditions as monsoonal climatic effects waned. The Junggar basin is rich in geological resources due to effects of volcanism and sedimentary deposition.

References

  1. 1 2 3 Stewart, J.H.; Murchey, Benita; Jones, D.L.; Wardlaw, B.R. (1986). "Paleontological evidence for complex tectonic interlayering of Mississippian to Permian deep-water rocks of the Golconda allochthon in Tobin Range, north-central Nevada". Geological Society of America Bulletin. 97 (9): 1122–1132. Bibcode:1986GSAB...97.1122S. doi:10.1130/0016-7606(1986)97<1122:PEFCTI>2.0.CO;2.
  2. 1 2 Brueckner, H.K.; Snyder, W.S. (1985). "Structure of the Havallah sequence, Golconda allochthon, Nevada: Evidence for prolonged evolution in an accretionary prism". Geological Society of America Bulletin. 96 (9): 1113–1130. doi:10.1130/0016-7606(1985)96<1113:sothsg>2.0.co;2.
  3. 1 2 3 Geologic map of the Dun Glen quadrangle, Pershing County, Nevada (Map). scale 1:48,000. Cartography by Whitebread, D.H. U.S. Geological Survey. 1994. Map I-2409. Retrieved 2014-03-01.
  4. Baldridge, W. Scott (2004). Geology of the American Southwest : a journey through two billion years of plate-tectonic history (Reprint. ed.). Cambridge [u.a.]: Cambridge Univ. Press. p. 158. ISBN   0-521-01666-5.
  5. 1 2 Silberling, N.J.; Roberts, R.J. (1962). Pre-Tertiary stratigraphy and structure of northwestern Nevada. Geological Society of America. ISBN   9780813720722. Special Paper 72. Retrieved 2014-03-01.
  6. 1 2 3 Miller, E.L.; Holdsworth, B.K.; Whiteford, W.B.; Rodgers, D. (1984). "Stratigraphy and structure of the Schoonover sequence, northeastern Nevada Implications for Paleozoic plate-margin tectonics". Geological Society of America Bulletin. 95 (9): 1063–1076. Bibcode:1984GSAB...95.1063M. doi:10.1130/0016-7606(1984)95<1063:SASOTS>2.0.CO;2.
  7. 1 2 3 4 Ketner, K.B (2008). The Inskip Formation, the Harmony Formation, and the Havallah sequence of northwestern Nevada—An interrelated Paleozoic assemblage in the home of the Sonoma orogeny. U.S. Geological Survey. Professional Paper 1757. Retrieved 2014-03-01.
  8. "National Geologic Map Database entry: Havallah". ngmdb.usgs.gov. United States Geological Survey . Retrieved 10 November 2019.
  9. Geologic map of the Hot Springs Peak quadrangle and the southeastern part of the Little Poverty quadrangle, Nevada (PDF) (Map). 1:24,000. Cartography by Jones, A.E. Nevada Bureau of Mines. 1997. Map 14. Archived from the original (PDF) on 2010-06-06. Retrieved 2014-03-01.
  10. Geologic map of the Delvada Spring quadrangle, Nevada (PDF) (Map). 1:24,000. Cartography by Jones, A.E. Nevada Bureau of Mines. 1997. Map 13. Archived from the original (PDF) on 2010-06-06. Retrieved 2014-03-01.
  11. 1 2 Snyder, S.S.; Brueckner, H.K. (1983). "Tectonic evolution of the Golconda allochthon, Nevada: Problems and perspectives". In Stevens, C.A. (ed.). Paleozoic and early Mesozoic rocks in microplates of western North America. Society of Economic Paleontologists and Mineralogists, Pacific Section. pp. 103–123. Retrieved 2014-03-01.
  12. 1 2 Silberling, N.J. (1973). "Geologic events during Permian-Triassic time along the Pacific margin of the United States". In Logan, A.; Hills, L.V. (eds.). The Permian and Triassic systems and their mutual boundary. Calgary, Canada: Alberta Society of Petroleum Geology. pp. 345–362. Retrieved 2014-03-01.
  13. Speed, R.C. (1979). "Collided Paleozoic microplate in the western United States" (PDF). Journal of Geology. 87 (3): 279–292. Bibcode:1979JG.....87..279S. doi:10.1086/628417.
  14. Dickinson, W.R. (2000). "Geodynamic interpretation of Paleozoic tectonic trends oriented oblique to the Mesozoic Klamath-Sierran continental margin in California". Geological Society of America Special Papers. 347 (347): 209–245. doi:10.1130/0-8137-2347-7.209. ISBN   0-8137-2347-7.
  15. Burchfiel, B.C.; Davis, G.A. (1972). "Structural framework and evolution of the southern part of the cordilleran orogen, western United States". American Journal of Science. 272 (2): 97–118. Bibcode:1972AmJS..272...97B. doi:10.2475/ajs.272.2.97.
  16. Davis, G.A. (1973). "Subduction-obduction model for the Antler and Sonoma orogenies, western Great Basin area". Geological Society of America. 5 (7): 592.
  17. Speed, R.C. (1977). "Island-arc and other paleogeographic terranes of late Paleozoic age in the western Great Basin". In Stewart, J.H.; Stevens, C.H.; Fritsche, A.E. (eds.). Paleozoic paleogeography of the western United States. Vol. 1. Society of Economic Paleontologists and Mineralogists, Pacific Section. pp. 349–362. Pacific coast paleogeography symposium.