Stanford dragon

Last updated
Computer-generated render of the Stanford dragon Stanford Dragon.jpg
Computer-generated render of the Stanford dragon

The Stanford dragon is a computer graphics 3D test model created with a Cyberware 3030 Model Shop (MS) Color 3D Scanner at Stanford University. The data for the model was produced in 1996.

Contents

The dragon consists of data describing 871,414 triangles [note 1] [1] determined by 3D scanning a real figurine. The data set is often used to test various graphics algorithms, including polygonal simplification, compression, and surface smoothing, [2] similar to the Stanford bunny (1993).

The model is available in different file formats (.ply, vrml, vl, etc.) on the internet for free.

See also

Notes

  1. Although the Stanford web page says that it has 1,132,830 triangles, the actual face count is 871,414 in the .ply file.

Related Research Articles

<span class="mw-page-title-main">Vector graphics</span> Computer graphics images defined by points, lines and curves

Vector graphics are a form of computer graphics in which visual images are created directly from geometric shapes defined on a Cartesian plane, such as points, lines, curves and polygons. The associated mechanisms may include vector display and printing hardware, vector data models and file formats, as well as the software based on these data models. Vector graphics is an alternative to raster or bitmap graphics, with each having advantages and disadvantages in specific situations.

<span class="mw-page-title-main">Utah teapot</span> Computer graphics 3D reference and test model

The Utah teapot, or the Newell teapot, is a 3D test model that has become a standard reference object and an in-joke within the computer graphics community. It is a mathematical model of an ordinary Melitta-brand teapot that appears solid with a nearly rotationally symmetrical body. Using a teapot model is considered the 3D equivalent of a "Hello, World!" program, a way to create an easy 3D scene with a somewhat complex model acting as the basic geometry for a scene with a light setup. Some programming libraries, such as the OpenGL Utility Toolkit, even have functions dedicated to drawing teapots.

<span class="mw-page-title-main">Cornell box</span> Computer graphics 3D reference model

The Cornell box is a test aimed at determining the accuracy of rendering software by comparing the rendered scene with an actual photograph of the same scene, and has become a commonly used 3D test model. It was created by Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile at the Cornell University Program of Computer Graphics for their paper Modeling the Interaction of Light Between Diffuse Surfaces published and presented at SIGGRAPH'84.

<span class="mw-page-title-main">Stanford bunny</span> Computer graphics 3D reference model

The Stanford bunny is a computer graphics 3D test model developed by Greg Turk and Marc Levoy in 1994 at Stanford University. The model consists of 69,451 triangles, with the data determined by 3D scanning a ceramic figurine of a rabbit. This figurine and others were scanned to test methods of range scanning physical objects.

<span class="mw-page-title-main">Scan line</span> One row in a raster scanning pattern

A scan line is one line, or row, in a raster scanning pattern, such as a line of video on a cathode ray tube (CRT) display of a television set or computer monitor.

<span class="mw-page-title-main">OpenSceneGraph</span>

OpenSceneGraph is an open-source 3D graphics application programming interface, used by application developers in fields such as visual simulation, computer games, virtual reality, scientific visualization and modeling.

<span class="mw-page-title-main">STL (file format)</span> File format for stereolithography applications

STL is a file format native to the stereolithography CAD software created by 3D Systems. Chuck Hull, the inventor of stereolithography and 3D Systems’ founder, reports that the file extension is an abbreviation for stereolithography.

An image file format is a file format for a digital image. There are many formats that can be used, such as JPEG, PNG, and GIF. Most formats up until 2022 were for storing 2D images, not 3D ones. The data stored in an image file format may be compressed or uncompressed. If the data is compressed, it may be done so using lossy compression or lossless compression. For graphic design applications, vector formats are often used. Some image file formats support transparency.

<span class="mw-page-title-main">3D scanning</span> Scanning of an object or environment to collect data on its shape

3D scanning is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance. The collected data can then be used to construct digital 3D models.

<span class="mw-page-title-main">Rhinoceros 3D</span> 3D computer graphics software

Rhinoceros is a commercial 3D computer graphics and computer-aided design (CAD) application software that was developed by TLM, Inc, dba Robert McNeel & Associates, an American, privately held, and employee-owned company that was founded in 1978. Rhinoceros geometry is based on the NURBS mathematical model, which focuses on producing mathematically precise representation of curves and freeform surfaces in computer graphics.

PLY is a computer file format known as the Polygon File Format or the Stanford Triangle Format. It was principally designed to store three-dimensional data from 3D scanners. The data storage format supports a relatively simple description of a single object as a list of nominally flat polygons. A variety of properties can be stored, including color and transparency, surface normals, texture coordinates and data confidence values. The format permits one to have different properties for the front and back of a polygon.

<span class="mw-page-title-main">3D computer graphics</span> Graphics that use a three-dimensional representation of geometric data

3D computer graphics, sometimes called CGI, 3-D-CGI or three-dimensional computer graphics, are graphics that use a three-dimensional representation of geometric data that is stored in the computer for the purposes of performing calculations and rendering digital images, usually 2D images but sometimes 3D images. The resulting images may be stored for viewing later or displayed in real time.

<span class="mw-page-title-main">ScanIP</span>

Synopsys Simpleware ScanIP is a 3D image processing and model generation software program developed by Synopsys Inc. to visualise, analyse, quantify, segment and export 3D image data from magnetic resonance imaging (MRI), computed tomography (CT), microtomography and other modalities for computer-aided design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and 3D printing. The software is used in the life sciences, materials science, nondestructive testing, reverse engineering and petrophysics.

<span class="mw-page-title-main">3D modeling</span> Form of computer-aided engineering

In 3D computer graphics, 3D modeling is the process of developing a mathematical coordinate-based representation of a surface of an object in three dimensions via specialized software by manipulating edges, vertices, and polygons in a simulated 3D space.

Microsoft Office shared tools are software components that are included in all Microsoft Office products.

<span class="mw-page-title-main">CloudCompare</span>

CloudCompare is a 3D point cloud processing software. It can also handle triangular meshes and calibrated images.

This is a glossary of terms relating to computer graphics.

<span class="mw-page-title-main">Art of Illusion</span>

Art of Illusion is a free software, and open source software package for making 3D graphics.

<span class="mw-page-title-main">Sutherland's Volkswagen</span> 3D test model

Sutherland's Volkswagen, or the Utah VW Bug, is a 3D model. It is a mathematical model of a 1967 Volkswagen Beetle and one of the earliest 3D computer models, aside from Catmull's hand.

References

  1. Zomorodian, Afra J. (2005-01-10). Topology for Computing. Cambridge University Press. p. 3. ISBN   9781139442633.
  2. Kumar, Vipin; Gavrilova, Marina L.; Tan, C. J. Kenneth; L'Ecuyer, Pierre (2003-08-03). Computational Science and Its Applications - ICCSA 2003: International Conference, Montreal, Canada, May 18-21, 2003, Proceedings. Springer. p. 290. ISBN   9783540448426.