Steam spring

Last updated

Stephenson four-wheeled locomotive of around 1814 G Stephensons Patent Locomotive Engine LOC3c10386v (cropped).jpg
Stephenson four-wheeled locomotive of around 1814

Steam springs or steam suspension are a form of suspension used for some early steam locomotives designed and built by George Stephenson. They were only briefly used and may have been used for fewer than ten locomotives.

Contents

Requirements for suspension

Cast-iron fishbelly rail Chpr rail.jpg
Cast-iron fishbelly rail

Early railways used cast-iron fishbelly rails. These were brittle and prone to cracking under shock loads. The new steam locomotives of the 1820s were much heavier than the horse-drawn wagons of earlier plateways. Locomotives of this period also used vertical cylinders set within the boiler. The vertical forces of the moving pistons further gave rise to hammer blow, which increased the load on the rails.

A further reason for suspension was to improve the frictional contact between the wheels and rail. This relied upon maintaining a good contact, thus requiring good suspension of the wheels over the uneven track. [2] The ability of an 'adhesion-hauled' locomotive to draw a train was much questioned at this time, as it was thought that the friction between a smooth iron wheel and the rail would be inadequate. Some designers, such as Blenkinsop with his Salamanca thought that a system of geared teeth would be necessary. Stephenson believed that, provided a good contact could be maintained between wheel and rail, frictional adhesion alone would be adequate.

Steam springs

1877 drawing of a claimed '1815 Stephenson locomotive', similar to The Duke but with flanged wheels, a plate chain and lacking the centre sprocket wheel. PSM V12 D281 Stephenson locomotive 1815.jpg
1877 drawing of a claimed '1815 Stephenson locomotive', similar to The Duke but with flanged wheels, a plate chain and lacking the centre sprocket wheel.

At the time of these early locomotives there was not yet a way of forging an adequate steel spring to carry the weight of a locomotive. High quality steel had been available since Huntsman's crucible process, but it was still so expensive as to be regarded as 'a semi-precious metal'. [4] It would be another forty years before Bessemer's converter made cheap bulk steel available. A similar problem affected safety valves, causing them to rely on dead weights or Hackworth's bulky stack of leaf springs, [5] rather than the ubiquitous steel coil spring that would appear later.

Stephenson's 'steam suspension' provided each wheel with its own 'steam spring'. Vertical cylinders were set into the base of the boiler, above each axle and offset in pairs to the sides. The chassis or frames of Stephenson's locomotives provided little structural strength, most of which came from the shell of the boiler. Inside each cylinder a piston carried the load of the axle and pressed upwards against steam pressure within the boiler. [6] A piston of only a few inches in diameter was sufficient to balance the locomotive's weight. The axlebox bearings could slide vertically within hornblocks attached to the wooden frame beneath the boiler.

Piston seals were a perennial problem at this time. Those for large stationary engines, working at low pressures, were sealed by a variety of methods including leather cup washers, pools of standing water and even a poultice of cow dung. As working pressures increased, which had been an essential part of turning the stationary steam engine into the mobile steam locomotive, demands on the piston seal increased further. Pistons were now mostly sealed by having oakum rope wrapped around them in a groove, often smeared with tallow. Keeping the rope seal moist, thus swollen, was recognised as an important factor in achieving a good seal. As the steam spring cylinders were in the lower part of the boiler, below the water line, it was expected that they would seal well. Despite this, they continued to give trouble with leakage and were eventually removed and replaced with iron or steel leaf springs. [7] Wood in 1831 illustrates one of the Killingworth locomotives, now fitted with metal leaf springs and also coupling rods. [8] [9]

Killingworth Colliery locomotives

George Stephenson's first locomotive was the Blücher of 1814. [6] [lower-roman 1] This was a four-wheeled locomotive with the wheels coupled by spur gears. It suffered from poor traction on the relatively new technology of edge rails with flanged wheels, put down to the problem of maintaining a good contact with them. It was the first of a batch of early Stephenson locomotives known as the 'Killingworth Colliery locomotives'. [lower-roman 2] Stephenson's next design was a development of this, still with four wheels, but now using a chain drive to couple them together. [11] This was his first locomotive to use steam springs. [1]

The Duke

Stephenson had gained a reputation as a builder of locomotives and was approached to build the first locomotive for use in Scotland, on the Kilmarnock and Troon Railway. The Duke was larger, with six wheels, and used the same chain drive and steam springs as the Killingworth locomotives. As this locomotive was to be built for an outside customer, Stephenson could no longer use the workshop facilities at Killingworth and so it was built at his friend William Losh's Walker Iron Works in Newcastle. [7] Improvements of this locomotive were detailed in a patent, jointly filed with Losh, on 30 September 1816.

The Duke was probably completed in 1817 [12] and ran at Kilmarnock, but seems to have continued the problems of rail breakage. It was sold to the Earl of Elgin in October 1824 for his railway in Fife, but being too heavy for the rails was used as a stationary pumping engine in a quarry at Charlestown, and from 1830 at a colliery near Dunfermline; its subsequent fate is unrecorded.

Most Scottish depictions of The Duke are inaccurate, being based on the Killingworth locomotives or even Stephenson's Rocket, but in 1914 a commemorative silver model was made for the centenary and this alone seems accurate, showing the six wheels and the cylinders of the steam springs. [13]

Hetton Colliery locomotives

Five locomotives were built for Hetton Colliery between 1820 and 1822, four of which were named: Hettton, Dart, Tallyho and Star. [7] [14] These were of similar design to The Duke, but four-wheeled with 3' 9" wheels. They were built with steam springs, later removed owing to problems with steam leakage. [7]

In 1852, Lyon was built as a replica of these early Hetton locomotives.

Later locomotives and Locomotion

Locomotion (replica), with coupling rods and Hackworth two-part disc wheels Locomotion Tyseley.jpg
Locomotion (replica), with coupling rods and Hackworth two-part disc wheels

Later locomotives abandoned the steam springs. For Locomotion on the Stockton and Darlington Railway in 1825 there was no springing provided. Although there were no springs, side-to-side compensation was provided to keep good contact between rails and wheels. One of the axles was carried in a 'cannon box' bearing that was pivoted centrally and could tilt from side to side. [15] Although not giving a stable ride for the locomotive, it did allow the wheels to follow uneven track. The presence of this cannon box between the wheels also prevented the previous use of the central drive chain and so Stephenson adopted the now ubiquitous coupling rods for his first time. Reducing the travel of the suspension, compared to that with steam springs, also made the provision of free-running coupling rods easier, as it avoided the change in effective wheelbase when one axle moved relative to the other.

The unsprung ride broke the original eight-spoked cast-iron wheels and so these were replaced by Hackworth with his distinctive two piece cast-iron disc wheels, trued by wooden wedges between the concentric parts. [15] Rail breakage had been reduced by this time with the use of stronger rails. These new malleable wrought iron rails had been the source of a rift between Stephenson and Losh, as Losh had originally expected to supply cast-iron rails from his ironworks, which Stephenson had briefly been a partner in. Stephenson though chose to use an improved iron rail from John Birkinshaw's Bedlington Ironworks instead.

Notes

  1. Recent scholarship holds that Stephenson's My Lord of 1814 pre-dated Blücher [10]
  2. It is uncertain just when the various Killingworth locomotives were built and details of their various designs are mis-reported.

Related Research Articles

George Stephenson English civil and mechanical engineer and the "Father of Railways" (1781-1848)

George Stephenson was a British civil engineer and mechanical engineer. Renowned as the "Father of Railways", Stephenson was considered by the Victorians a great example of diligent application and thirst for improvement. Self-help advocate Samuel Smiles particularly praised his achievements. His chosen rail gauge, sometimes called 'Stephenson gauge', was the basis for the 4 feet 8 12 inches (1.435 m) standard gauge used by most of the world's railways.

Stephensons <i>Rocket</i> Early steam locomotive than won the Rainhill Trials

Stephenson's Rocket is an early steam locomotive of 0-2-2 wheel arrangement. It was built for and won the Rainhill Trials of the Liverpool and Manchester Railway (L&MR), held in October 1829 to show that improved locomotives would be more efficient than stationary steam engines.

William Hedley British inventor and industrial engineer (1779-1843)

William Hedley was born in Newburn, near Newcastle upon Tyne. He was one of the leading industrial engineers of the early 19th century, and was instrumental in several major innovations in early railway development. While working as a 'viewer' or manager at Wylam Colliery near Newcastle upon Tyne, he built the first practical steam locomotive which relied simply on the adhesion of iron wheels on iron rails.

Timothy Hackworth British steam locomotive engineer (1786-1850)

Timothy Hackworth was an English steam locomotive engineer who lived in Shildon, County Durham, England and was the first locomotive superintendent of the Stockton and Darlington Railway.

Steam locomotive Railway locomotive that produces its pulling power through a steam engine

A steam locomotive is a type of railway locomotive that produces its pulling power through a steam engine. These locomotives are fuelled by burning combustible material—usually coal, wood, or oil—to produce steam in a boiler. The steam moves reciprocating pistons which are mechanically connected to the locomotive's main wheels (drivers). Both fuel and water supplies are carried with the locomotive, either on the locomotive itself or in wagons (tenders) pulled behind.

A geared steam locomotive is a type of steam locomotive which uses gearing, usually reduction gearing, in the drivetrain, as opposed to the common directly driven design.

<i>Puffing Billy</i> (locomotive) Preserved early British steam locomotive

Puffing Billy is the world's oldest surviving steam locomotive, constructed in 1813–1814 by colliery viewer William Hedley, enginewright Jonathan Forster and blacksmith Timothy Hackworth for Christopher Blackett, the owner of Wylam Colliery near Newcastle upon Tyne, in the United Kingdom. It was employed to haul coal chaldron wagons from the mine at Wylam to the docks at Lemington in Northumberland.

Glossary of rail transport terms Wikipedia glossary

Rail terminology is a form of technical terminology. The difference between the American term railroad and the international term railway is the most significant difference in rail terminology. There are also others, due to the parallel development of rail transport systems in different parts of the world.

Steam locomotive components

This is a glossary of the components found on typical steam locomotives.

4-2-0

Under the Whyte notation for the classification of steam locomotives, 4-2-0 represents the wheel arrangement of four leading wheels on two axles, two powered driving wheels on one axle and no trailing wheels. This type of locomotive is often called a Jervis type, the name of the original designer.

<i>Novelty</i> (locomotive) Early experimental locomotive

Novelty was an early steam locomotive built by John Ericsson and John Braithwaite to take part in the Rainhill Trials in 1829.

Hetton colliery railway First railway to operate without animal power (opened in 1822)

The Hetton colliery railway was an 8-mile (13 km) long private railway opened in 1822 by the Hetton Coal Company at Hetton Lyons, County Durham, England. It was the first railway to operate without animal power, and the first entirely new line to be developed by George Stephenson.

<i>Salamanca</i> (locomotive) Early British steam locomotive (built 1812)

Salamanca was the first commercially successful steam locomotive, built in 1812 by Matthew Murray of Holbeck, for the edge railed Middleton Railway between Middleton and Leeds, England. It was the first to have two cylinders. It was named after the Duke of Wellington's victory at the battle of Salamanca which was fought that same year.

The history of rail transport in Great Britain to 1830 covers the period up to the opening of the Liverpool and Manchester Railway, the world's first intercity passenger railway operated solely by steam locomotives. The earliest form of railways, horse-drawn wagonways, originated in Germany in the 16th century. Soon wagonways were also built in Britain. However, the first use of steam locomotives was in Britain. The invention of wrought iron rails, together with Richard Trevithick's pioneering steam locomotive meant that Britain had the first modern railways in the world.

Bury Bar Frame locomotive

The Bury Bar Frame locomotive was an early type of steam locomotive, developed at the works of Edward Bury and Company, later named Bury, Curtis, and Kennedy. By the 1830s, the railway locomotive had evolved into three basic types - those developed by Robert Stephenson, Timothy Hackworth and Edward Bury.

Killingworth locomotives Early experimental steam locomotives

George Stephenson built a number of experimental steam locomotives to work in the Killingworth Colliery between 1814 and 1826.

South African Class 21 2-10-4

The South African Railways Class 21 2-10-4 of 1937 was a steam locomotive.

Steam motor

A steam motor is a form of steam engine used for light locomotives. They represented one of the final developments of the steam locomotive, in the final decades of the widespread use of steam power.

Lyon, Hetton colliery railway

The Hetton Colliery Lyon or Lyons is an early British steam locomotive that still survives in preservation. It is remarkable for having continued working into the early 20th century.

A cannon bearing or cannon box bearing is an arrangement of bearings on a shaft, usually an axle, where two bearings are mounted in an enclosed tube.

References

  1. 1 2 Strickland, William (1826). "G. Stephenson's Patent Locomotive Engine" (engraving).
  2. Warren, J.G.H. (1970) [1923]. A Century of Locomotive Building. David & Charles. p. 24. ISBN   0-7153-4378-5.
  3. Thurston, Robert H. (1878). A History of the Growth of the Steam-Engine.
  4. Jones, M.H. (2011). The Brendon Hills Iron Mines and the West Somerset Mineral Railway. Lightmoor Press. p. 16. ISBN   9781899889-5-3-2.
  5. "Hackworth spring safety valve" (Image of museum exhibit). National Railway Museum. 1830.
  6. 1 2 Thurston (1878), p. 187.
  7. 1 2 3 4 Lowe, James W. (1975). "George Stephenson". British Steam Locomotive Builders. Guild Publishing. pp. 606–607. ISBN   0900404213.
  8. Wood, Nicholas (1825). A Practical Treatise on Rail-roads and Interior Communication in General. London: Knight & Lacey. p. Plate VII.
  9. Bailey (2014), p. 32.
  10. Bailey, Michael R. (2014). "The George Stephenson Types, 1820s". Loco Motion. The History Press. p. 31. ISBN   978-0-7524-9101-1.
  11. Stephenson's Killingworth locomotive, 1815, engraving of 1829, unknown author, in The British Railway Locomotive 1803-1853. HMSO. 1958.
  12. Brotchie, Alan W; Jack, Harry (2007). Early Railways of West Fife. Catrine: Stenlake Publishing. pp. 49–53. ISBN   978-1-84033-409-8.
  13. "Troon's icon of industry: the first railway locomotive in Scotland". South Ayrshire History Blog. South Ayrshire Libraries. 16 October 2012.
  14. Thurston (1878), p. 190.
  15. 1 2 Bailey (2014), p. 35–36.