Stigmatellin

Last updated
Stigmatellin
Stigmatellin.svg
Names
Preferred IUPAC name
2-[(3S,4S,5S,6S,7E,9E,11E)-4,6-Dimethoxy-3,5,11-trimethyltrideca-7,9,11-trien-1-yl]-8-hydroxy-5,7-dimethoxy-3-methyl-4H-1-benzopyran-4-one
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.149.842 OOjs UI icon edit-ltr-progressive.svg
MeSH Stigmatellin
PubChem CID
  • InChI=1S/C30H42O7/c1-10-18(2)13-11-12-14-22(33-6)21(5)29(36-9)19(3)15-16-23-20(4)27(31)26-24(34-7)17-25(35-8)28(32)30(26)37-23/h10-14,17,19,21-22,29,32H,15-16H2,1-9H3/b13-11+,14-12+,18-10+/t19-,21+,22-,29-/m0/s1 Yes check.svgY
    Key: UZHDGDDPOPDJGM-CVOZLMQJSA-N Yes check.svgY
  • InChI=1/C30H42O7/c1-10-18(2)13-11-12-14-22(33-6)21(5)29(36-9)19(3)15-16-23-20(4)27(31)26-24(34-7)17-25(35-8)28(32)30(26)37-23/h10-14,17,19,21-22,29,32H,15-16H2,1-9H3/b13-11+,14-12+,18-10+/t19-,21+,22-,29-/m0/s1
    Key: UZHDGDDPOPDJGM-CVOZLMQJBZ
  • O=C\1c2c(O/C(=C/1C)CC[C@H](C)[C@H](OC)[C@H](C)[C@@H](OC)\C=C\C=C\C(=C\C)C)c(O)c(OC)cc2OC
Properties
C30H42O7
Molar mass 514.65 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Stigmatellin is a potent inhibitor of the quinol oxidation (Qo) site of the cytochrome bc1 complex in mitochondria [1] and the cytochrome b6f complex of thylakoid membranes. At higher concentrations, stigmatellin also inhibits Complex I, as a "Class B" inhibitor of that enzyme. [2]

Stigmatellin is isolated from the myxobacterium Stigmatella aurantica , and contains a 5,7-dimethoxy-8-hydroxychromone aromatic headgroup with a hydrophobic alkenyl chain in position 2. Crystal structures for stigmatellin-inhibited bc1 complex from bovine, avian, yeast ( Saccharomyces cerevisiae ) and bacterial ( Rhodobacter capsulatus , Cereibacter sphaeroides , and Paracoccus denitrificans ) sources are available. Stigmatellin binds at the cytochrome b Qo site in the '(heme) bl distal' position, and associates with the Rieske iron-sulfur protein via a hydrogen bond to histidine residue 181 (His-181), a ligand to the [2Fe2S] iron-sulfur cluster of this subunit. This association raises the midpoint potential of the iron-sulfur cluster from 290 to 540 mV and restricts movement of the cytoplasmic domain of the Rieske protein.

Related Research Articles

<span class="mw-page-title-main">Oxidative phosphorylation</span> Metabolic pathway

Oxidative phosphorylation or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP). In eukaryotes, this takes place inside mitochondria. Almost all aerobic organisms carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than alternative fermentation processes such as anaerobic glycolysis.

An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H+ ions) across a membrane. Many of the enzymes in the electron transport chain are embedded within the membrane.

<span class="mw-page-title-main">Cytochrome c</span> Protein-coding gene in the species Homo sapiens

The cytochrome complex, or cyt c, is a small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. It transfers electrons between Complexes III and IV. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis. In humans, cytochrome c is encoded by the CYCS gene.

<span class="mw-page-title-main">Cytochrome c oxidase</span> Complex enzyme found in bacteria, archaea, and mitochondria of eukaryotes

The enzyme cytochrome c oxidase or Complex IV, is a large transmembrane protein complex found in bacteria, archaea, and the mitochondria of eukaryotes.

<span class="mw-page-title-main">Respiratory complex I</span> Protein complex involved in cellular respiration

Respiratory complex I, EC 7.1.1.2 is the first large protein complex of the respiratory chains of many organisms from bacteria to humans. It catalyzes the transfer of electrons from NADH to coenzyme Q10 (CoQ10) and translocates protons across the inner mitochondrial membrane in eukaryotes or the plasma membrane of bacteria.

<span class="mw-page-title-main">Coenzyme Q – cytochrome c reductase</span> Class of enzymes

The coenzyme Q : cytochrome c – oxidoreductase, sometimes called the cytochrome bc1 complex, and at other times complex III, is the third complex in the electron transport chain, playing a critical role in biochemical generation of ATP. Complex III is a multisubunit transmembrane protein encoded by both the mitochondrial and the nuclear genomes. Complex III is present in the mitochondria of all animals and all aerobic eukaryotes and the inner membranes of most eubacteria. Mutations in Complex III cause exercise intolerance as well as multisystem disorders. The bc1 complex contains 11 subunits, 3 respiratory subunits, 2 core proteins and 6 low-molecular weight proteins.

<span class="mw-page-title-main">Succinate dehydrogenase</span> Enzyme

Succinate dehydrogenase (SDH) or succinate-coenzyme Q reductase (SQR) or respiratory complex II is an enzyme complex, found in many bacterial cells and in the inner mitochondrial membrane of eukaryotes. It is the only enzyme that participates in both the citric acid cycle and the electron transport chain. Histochemical analysis showing high succinate dehydrogenase in muscle demonstrates high mitochondrial content and high oxidative potential.

Iron–sulfur proteins are proteins characterized by the presence of iron–sulfur clusters containing sulfide-linked di-, tri-, and tetrairon centers in variable oxidation states. Iron–sulfur clusters are found in a variety of metalloproteins, such as the ferredoxins, as well as NADH dehydrogenase, hydrogenases, coenzyme Q – cytochrome c reductase, succinate – coenzyme Q reductase and nitrogenase. Iron–sulfur clusters are best known for their role in the oxidation-reduction reactions of electron transport in mitochondria and chloroplasts. Both Complex I and Complex II of oxidative phosphorylation have multiple Fe–S clusters. They have many other functions including catalysis as illustrated by aconitase, generation of radicals as illustrated by SAM-dependent enzymes, and as sulfur donors in the biosynthesis of lipoic acid and biotin. Additionally, some Fe–S proteins regulate gene expression. Fe–S proteins are vulnerable to attack by biogenic nitric oxide, forming dinitrosyl iron complexes. In most Fe–S proteins, the terminal ligands on Fe are thiolate, but exceptions exist.

Cytochrome b<sub>6</sub>f complex Enzyme

The cytochrome b6f complex (plastoquinol/plastocyanin reductase or plastoquinol/plastocyanin oxidoreductase; EC 7.1.1.6) is an enzyme found in the thylakoid membrane in chloroplasts of plants, cyanobacteria, and green algae, that catalyzes the transfer of electrons from plastoquinol to plastocyanin:

<span class="mw-page-title-main">Rieske protein</span> Protein family with an iron–sulfur center transferring electrons

Rieske proteins are iron–sulfur protein (ISP) components of cytochrome bc1 complexes and cytochrome b6f complexes and are responsible for electron transfer in some biological systems. John S. Rieske and co-workers first discovered the protein and in 1964 isolated an acetylated form of the bovine mitochondrial protein. In 1979 Trumpower's lab isolated the "oxidation factor" from bovine mitochondria and showed it was a reconstitutively-active form of the Rieske iron-sulfur protein
It is a unique [2Fe-2S] cluster in that one of the two Fe atoms is coordinated by two histidine residues rather than two cysteine residues. They have since been found in plants, animals, and bacteria with widely ranging electron reduction potentials from -150 to +400 mV.

<span class="mw-page-title-main">Q cycle</span>

The Q cycle describes a series of reactions that describe how the sequential oxidation and reduction of the lipophilic electron carrier Coenzyme Q (CoQ) between the ubiquinol and ubiquinone forms, can result in the net movement of protons across a lipid bilayer.

<span class="mw-page-title-main">Inner mitochondrial membrane</span>

The inner mitochondrial membrane (IMM) is the mitochondrial membrane which separates the mitochondrial matrix from the intermembrane space.

<span class="mw-page-title-main">Cytochrome b</span> Membrane protein involved in the electron transport chain

Cytochrome b within both molecular and cell biology, is a protein found in the membranes of aerobic cells. In eukaryotic mitochondria and in aerobic prokaryotes, cytochrome b is a component of respiratory chain complex III — also known as the bc1 complex or ubiquinol-cytochrome c reductase. In plant chloroplasts and cyanobacteria, there is an homologous protein, cytochrome b6, a component of the plastoquinone-plastocyanin reductase, also known as the b6f complex. These complexes are involved in electron transport, the pumping of protons to create a proton-motive force (PMF). This proton gradient is used for the generation of ATP. These complexes play a vital role in cells.

Myxothiazol is a chemical compound produced by the myxobacterium Myxococcus fulvus. It is an inhibitor of the mitochondrial cytochrome bc1 complex.

<span class="mw-page-title-main">MT-CYB</span> A mitochondrial protein-coding gene whose product is involved in the respiratory chain

Cytochrome b is a protein that in humans is encoded by the MT-CYB gene. Its gene product is a subunit of the respiratory chain protein ubiquinol–cytochrome c reductase, which consists of the products of one mitochondrially encoded gene, MT-CYB, and ten nuclear genes—UQCRC1, UQCRC2, CYC1, UQCRFS1, UQCRB, "11kDa protein", UQCRH, Rieske protein presequence, "cyt c1 associated protein", and Rieske-associated protein.

<span class="mw-page-title-main">CYC1</span> Protein-coding gene in the species Homo sapiens

Cytochrome c1, heme protein, mitochondrial (CYC1), also known as UQCR4, MC3DN6, Complex III subunit 4, Cytochrome b-c1 complex subunit 4, or Ubiquinol-cytochrome-c reductase complex cytochrome c1 subunit is a protein that in humans is encoded by the CYC1 gene. CYC1 is a respiratory subunit of Ubiquinol Cytochrome c Reductase, which is located in the inner mitochondrial membrane and is part of the electron transport chain. Mutations in this gene may cause mitochondrial complex III deficiency, nuclear, type 6.

<span class="mw-page-title-main">UQCRC1</span> Protein-coding gene in the species Homo sapiens

Cytochrome b-c1 complex subunit 1, mitochondrial is a protein that in humans is encoded by the UQCRC1 gene.

<span class="mw-page-title-main">UQCR10</span> Protein-coding gene in the species Homo sapiens

Ubiquinol-cytochrome c reductase complex , also known as UCRC or UQCR10, is a human gene.

<span class="mw-page-title-main">UQCR11</span> Protein-coding gene in the species Homo sapiens

UQCR11 is a protein that in humans is encoded by the UQCR11 gene. UQCR11 is the smallest known component of Complex III in the mitochondrial respiratory chain.

LYR motif containing 7, also known as Complex III assembly factor LYRM7 or LYR motif-containing protein 7 is a protein that in humans is encoded by the LYRM7 gene. The protein encoded by this gene is a nuclear-encoded mitochondrial matrix protein that stabilizes UQCRFS1 and chaperones it to the CIII complex. Defects in this gene are a cause of mitochondrial complex III deficiency, nuclear type 8. Three transcript variants encoding two different isoforms have been found for this gene.

References

  1. von Jagow G, Ohnishi T (June 1985). "The chromone inhibitor stigmatellin--binding to the ubiquinol oxidation center at the C-side of the mitochondrial membrane". FEBS Letters. 185 (2): 311–5. doi:10.1016/0014-5793(85)80929-7. PMID   2987042. S2CID   37956153.
  2. Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G (May 2009). "Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1787 (5): 384–92. doi:10.1016/j.bbabio.2008.11.003. PMC   2724837 . PMID   19059197.

Further reading