Stone–Weierstrass theorem

Last updated

In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval [a, b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885 using the Weierstrass transform.

Contents

Marshall H. Stone considerably generalized the theorem [1] and simplified the proof. [2] His result is known as the Stone–Weierstrass theorem. The Stone–Weierstrass theorem generalizes the Weierstrass approximation theorem in two directions: instead of the real interval [a, b], an arbitrary compact Hausdorff space X is considered, and instead of the algebra of polynomial functions, a variety of other families of continuous functions on are shown to suffice, as is detailed below. The Stone–Weierstrass theorem is a vital result in the study of the algebra of continuous functions on a compact Hausdorff space.

Further, there is a generalization of the Stone–Weierstrass theorem to noncompact Tychonoff spaces, namely, any continuous function on a Tychonoff space is approximated uniformly on compact sets by algebras of the type appearing in the Stone–Weierstrass theorem and described below.

A different generalization of Weierstrass' original theorem is Mergelyan's theorem, which generalizes it to functions defined on certain subsets of the complex plane.

Weierstrass approximation theorem

The statement of the approximation theorem as originally discovered by Weierstrass is as follows:

Weierstrass approximation theorem  Suppose f is a continuous real-valued function defined on the real interval [a, b]. For every ε > 0, there exists a polynomial p such that for all x in [a, b], we have |f(x) p(x)| < ε, or equivalently, the supremum norm ||f p|| < ε.

A constructive proof of this theorem using Bernstein polynomials is outlined on that page.

Applications

As a consequence of the Weierstrass approximation theorem, one can show that the space C[a, b] is separable: the polynomial functions are dense, and each polynomial function can be uniformly approximated by one with rational coefficients; there are only countably many polynomials with rational coefficients. Since C[a, b] is metrizable and separable it follows that C[a, b] has cardinality at most 20. (Remark: This cardinality result also follows from the fact that a continuous function on the reals is uniquely determined by its restriction to the rationals.)

Stone–Weierstrass theorem, real version

The set C[a, b] of continuous real-valued functions on [a, b], together with the supremum norm || f || = supaxb | f (x)|, is a Banach algebra, (that is, an associative algebra and a Banach space such that || fg|| ≤ || f ||·||g|| for all f, g). The set of all polynomial functions forms a subalgebra of C[a, b] (that is, a vector subspace of C[a, b] that is closed under multiplication of functions), and the content of the Weierstrass approximation theorem is that this subalgebra is dense in C[a, b].

Stone starts with an arbitrary compact Hausdorff space X and considers the algebra C(X, R) of real-valued continuous functions on X, with the topology of uniform convergence. He wants to find subalgebras of C(X, R) which are dense. It turns out that the crucial property that a subalgebra must satisfy is that it separates points : a set A of functions defined on X is said to separate points if, for every two different points x and y in X there exists a function p in A with p(x) ≠ p(y). Now we may state:

Stone–Weierstrass theorem (real numbers)  Suppose X is a compact Hausdorff space and A is a subalgebra of C(X, R) which contains a non-zero constant function. Then A is dense in C(X, R) if and only if it separates points.

This implies Weierstrass' original statement since the polynomials on [a, b] form a subalgebra of C[a, b] which contains the constants and separates points.

Locally compact version

A version of the Stone–Weierstrass theorem is also true when X is only locally compact. Let C0(X, R) be the space of real-valued continuous functions on X that vanish at infinity; that is, a continuous function f is in C0(X, R) if, for every ε > 0, there exists a compact set KX such that  | f |  < ε on X \ K. Again, C0(X, R) is a Banach algebra with the supremum norm. A subalgebra A of C0(X, R) is said to vanish nowhere if not all of the elements of A simultaneously vanish at a point; that is, for every x in X, there is some f in A such that f (x) ≠ 0. The theorem generalizes as follows:

Stone–Weierstrass theorem (locally compact spaces)  Suppose X is a locally compact Hausdorff space and A is a subalgebra of C0(X, R). Then A is dense in C0(X, R) (given the topology of uniform convergence) if and only if it separates points and vanishes nowhere.

This version clearly implies the previous version in the case when X is compact, since in that case C0(X, R) = C(X, R). There are also more general versions of the Stone–Weierstrass that weaken the assumption of local compactness. [3]

Applications

The Stone–Weierstrass theorem can be used to prove the following two statements, which go beyond Weierstrass's result.

The theorem has many other applications to analysis, including:

Stone–Weierstrass theorem, complex version

Slightly more general is the following theorem, where we consider the algebra of complex-valued continuous functions on the compact space , again with the topology of uniform convergence. This is a C*-algebra with the *-operation given by pointwise complex conjugation.

Stone–Weierstrass theorem (complex numbers)  Let be a compact Hausdorff space and let be a separating subset of . Then the complex unital *-algebra generated by is dense in .

The complex unital *-algebra generated by consists of all those functions that can be obtained from the elements of by throwing in the constant function 1 and adding them, multiplying them, conjugating them, or multiplying them with complex scalars, and repeating finitely many times.

This theorem implies the real version, because if a net of complex-valued functions uniformly approximates a given function, , then the real parts of those functions uniformly approximate the real part of that function, , and because for real subsets, taking the real parts of the generated complex unital (selfadjoint) algebra agrees with the generated real unital algebra generated.

As in the real case, an analog of this theorem is true for locally compact Hausdorff spaces.

Stone–Weierstrass theorem, quaternion version

Following Holladay (1957), consider the algebra C(X, H) of quaternion-valued continuous functions on the compact space X, again with the topology of uniform convergence.

If a quaternion q is written in the form

Likewise

Then we may state:

Stone–Weierstrass theorem (quaternion numbers)  Suppose X is a compact Hausdorff space and A is a subalgebra of C(X, H) which contains a non-zero constant function. Then A is dense in C(X, H) if and only if it separates points.

Stone–Weierstrass theorem, C*-algebra version

The space of complex-valued continuous functions on a compact Hausdorff space i.e. is the canonical example of a unital commutative C*-algebra . The space X may be viewed as the space of pure states on , with the weak-* topology. Following the above cue, a non-commutative extension of the Stone–Weierstrass theorem, which remains unsolved, is as follows:

Conjecture  If a unital C*-algebra has a C*-subalgebra which separates the pure states of , then .

In 1960, Jim Glimm proved a weaker version of the above conjecture.

Stone–Weierstrass theorem (C*-algebras) [4]   If a unital C*-algebra has a C*-subalgebra which separates the pure state space (i.e. the weak-* closure of the pure states) of , then .

Lattice versions

Let X be a compact Hausdorff space. Stone's original proof of the theorem used the idea of lattices in C(X, R). A subset L of C(X, R) is called a lattice if for any two elements f, gL, the functions max{ f, g}, min{ f, g} also belong to L. The lattice version of the Stone–Weierstrass theorem states:

Stone–Weierstrass theorem (lattices)  Suppose X is a compact Hausdorff space with at least two points and L is a lattice in C(X, R) with the property that for any two distinct elements x and y of X and any two real numbers a and b there exists an element f  ∈ L with f (x) = a and f (y) = b. Then L is dense in C(X, R).

The above versions of Stone–Weierstrass can be proven from this version once one realizes that the lattice property can also be formulated using the absolute value | f | which in turn can be approximated by polynomials in f. A variant of the theorem applies to linear subspaces of C(X, R) closed under max: [5]

Stone–Weierstrass theorem (max-closed)  Suppose X is a compact Hausdorff space and B is a family of functions in C(X, R) such that

  1. B separates points.
  2. B contains the constant function 1.
  3. If f  ∈ B then af  ∈ B for all constants aR.
  4. If f,  gB, then f  + g, max{ f, g} ∈ B.

Then B is dense in C(X, R).

More precise information is available:

Suppose X is a compact Hausdorff space with at least two points and L is a lattice in C(X, R). The function φ ∈ C(X, R) belongs to the closure of L if and only if for each pair of distinct points x and y in X and for each ε > 0 there exists some f  ∈ L for which | f (x) − φ(x)| < ε and | f (y) − φ(y)| < ε.

Bishop's theorem

Another generalization of the Stone–Weierstrass theorem is due to Errett Bishop. Bishop's theorem is as follows: [6]

Bishop's theorem  Let A be a closed subalgebra of the complex Banach algebra C(X, C) of continuous complex-valued functions on a compact Hausdorff space X, using the supremum norm. For SX we write AS = {g|S : g A}. Suppose that f  ∈ C(X, C) has the following property:

f |SAS for every maximal set SX such that all real functions of AS are constant.

Then f  ∈ A.

Glicksberg (1962) gives a short proof of Bishop's theorem using the Krein–Milman theorem in an essential way, as well as the Hahn–Banach theorem: the process of Louis de Branges (1959). See also Rudin (1973 , §5.7).

Nachbin's theorem

Nachbin's theorem gives an analog for Stone–Weierstrass theorem for algebras of complex valued smooth functions on a smooth manifold. [7] Nachbin's theorem is as follows: [8]

Nachbin's theorem  Let A be a subalgebra of the algebra C(M) of smooth functions on a finite dimensional smooth manifold M. Suppose that A separates the points of M and also separates the tangent vectors of M: for each point mM and tangent vector v at the tangent space at m, there is a fA such that df(x)(v) ≠ 0. Then A is dense in C(M).

Editorial history

In 1885 it was also published in an English version of the paper whose title was On the possibility of giving an analytic representation to an arbitrary function of real variable. [9] [10] [11] [12] [13] According to the mathematician Yamilet Quintana, Weierstrass "suspected that any analytic functions could be represented by power series". [13] [12]

See also

Notes

  1. Stone, M. H. (1937), "Applications of the Theory of Boolean Rings to General Topology", Transactions of the American Mathematical Society, 41 (3): 375–481, doi: 10.2307/1989788 , JSTOR   1989788
  2. Stone, M. H. (1948), "The Generalized Weierstrass Approximation Theorem", Mathematics Magazine, 21 (4): 167–184, doi:10.2307/3029750, JSTOR   3029750, MR   0027121 ; 21 (5), 237–254.
  3. Willard, Stephen (1970). General Topology . Addison-Wesley. p.  293. ISBN   0-486-43479-6.
  4. Glimm, James (1960). "A Stone–Weierstrass Theorem for C*-algebras". Annals of Mathematics . Second Series. 72 (2): 216–244 [Theorem 1]. doi:10.2307/1970133. JSTOR   1970133.
  5. Hewitt, E; Stromberg, K (1965), Real and abstract analysis, Springer-Verlag, Theorem 7.29
  6. Bishop, Errett (1961), "A generalization of the Stone–Weierstrass theorem", Pacific Journal of Mathematics, 11 (3): 777–783, doi: 10.2140/pjm.1961.11.777
  7. Nachbin, L. (1949), "Sur les algèbres denses de fonctions diffèrentiables sur une variété", C. R. Acad. Sci. Paris, 228: 1549–1551
  8. Llavona, José G. (1986), Approximation of continuously differentiable functions, Amsterdam: North-Holland, ISBN   9780080872414
  9. Pinkus, Allan. "Weierstrass and Approximation Theory" (PDF). Journal of Approximation Theory. 107 (1): 8. ISSN   0021-9045. OCLC   4638498762. Archived (PDF) from the original on October 19, 2013. Retrieved July 3, 2021.
  10. Pinkus, Allan (2004). "Density methods and results in approximation theory". Orlicz Centenary Volume. Banach Center publications. Institute of Mathematics, Polish Academy of Sciences. 64: 3. CiteSeerX   10.1.1.62.520 . ISSN   0137-6934. OCLC   200133324. Archived from the original on July 3, 2021.
  11. Ciesielski, Zbigniew; Pełczyński, Aleksander; Skrzypczak, Leszek (2004). Orlicz centenary volume : proceedings of the conferences "The Wladyslaw Orlicz Centenary Conference" and Function Spaces VII : Poznan, 20-25 July 2003. Vol. I, Plenary lectures. Banach Center publications. Vol. 64. Institute of Mathematics. Polish Academy of Sciences. p. 175. OCLC   912348549.
  12. 1 2 Quintana, Yamilet; Perez D. (2008). "A survey on the Weierstrass approximation theorem". Divulgaciones Matematicas. 16 (1): 232. OCLC   810468303 . Retrieved July 3, 2021. Weierstrass' perception on analytic functions was of functions that could berepresented by power series (arXiv 0611038v2).
  13. 1 2 Quintana, Yamilet (2010). "On Hilbert extensions of Weierstrass' theorem with weights". Journal of Function Spaces. Scientific Horizon. 8 (2): 202. arXiv: math/0611034 . doi: 10.1155/2010/645369 . ISSN   0972-6802. OCLC   7180746563. (arXiv 0611034v3). Citing: D. S. Lubinsky, Weierstrass' Theorem in the twentieth century: a selection, in Quaestiones Mathematicae18 (1995), 91–130.

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

<span class="mw-page-title-main">Lipschitz continuity</span> Strong form of uniform continuity

In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the Lipschitz constant of the function. For instance, every function that is defined on an interval and has bounded first derivative is Lipschitz continuous.

In the mathematical discipline of general topology, Stone–Čech compactification is a technique for constructing a universal map from a topological space X to a compact Hausdorff space βX. The Stone–Čech compactification βX of a topological space X is the largest, most general compact Hausdorff space "generated" by X, in the sense that any continuous map from X to a compact Hausdorff space factors through βX. If X is a Tychonoff space then the map from X to its image in βX is a homeomorphism, so X can be thought of as a (dense) subspace of βX; every other compact Hausdorff space that densely contains X is a quotient of βX. For general topological spaces X, the map from X to βX need not be injective.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

In mathematics, the Gelfand representation in functional analysis is either of two things:

In the mathematical subfields of numerical analysis and mathematical analysis, a trigonometric polynomial is a finite linear combination of functions sin(nx) and cos(nx) with n taking on the values of one or more natural numbers. The coefficients may be taken as real numbers, for real-valued functions. For complex coefficients, there is no difference between such a function and a finite Fourier series.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:

In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

In mathematics, compact quantum groups are generalisations of compact groups, where the commutative -algebra of continuous complex-valued functions on a compact group is generalised to an abstract structure on a not-necessarily commutative unital -algebra, which plays the role of the "algebra of continuous complex-valued functions on the compact quantum group".

In functional analysis, a Banach function algebra on a compact Hausdorff space X is unital subalgebra, A, of the commutative C*-algebra C(X) of all continuous, complex-valued functions from X, together with a norm on A that makes it a Banach algebra.

In functional analysis, a field of mathematics, the Banach–Mazur theorem is a theorem roughly stating that most well-behaved normed spaces are subspaces of the space of continuous paths. It is named after Stefan Banach and Stanisław Mazur.

In mathematics, a Dirichlet algebra is a particular type of algebra associated to a compact Hausdorff space X. It is a closed subalgebra of C(X), the uniform algebra of bounded continuous functions on X, whose real parts are dense in the algebra of bounded continuous real functions on X. The concept was introduced by Andrew Gleason (1957).

In mathematics, a set of functions with domain is called a separating set for and is said to separate the points of if for any two distinct elements and of there exists a function such that

Artificial neural networks are combinations of multiple simple mathematical functions that implement more complicated functions from (typically) real-valued vectors to real-valued vectors. The spaces of multivariate functions that can be implemented by a network are determined by the structure of the network, the set of simple functions, and its multiplicative parameters. A great deal of theoretical work has gone into characterizing these function spaces.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

This is a glossary for the terminology in a mathematical field of functional analysis.

References

Historical works

The historical publication of Weierstrass (in German language) is freely available from the digital online archive of the Berlin Brandenburgische Akademie der Wissenschaften :