Streptomyces lincolnensis

Last updated

Streptomyces lincolnensis
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Streptomycetales
Family: Streptomycetaceae
Genus: Streptomyces
Species:
S. lincolnensis
Binomial name
Streptomyces lincolnensis
Mason et al. 1963 (Approved Lists 1980) [1]

Streptomyces lincolnensis is a bacterium species in the type genus Streptomyces .

Contents

D-Lincosamine, an antibiotic from Streptomyces lincolnensis; it is the carbohydrate component of lincomycin. Structure shows the alpha-anomer Lincosamine.svg
D-Lincosamine, an antibiotic from Streptomyces lincolnensis; it is the carbohydrate component of lincomycin. Structure shows the alpha-anomer

S. lincolnensis produces the antibacterial lincomycin. [2] It also produces valienol, a C-7 cyclitol similar in structure to valienamine.

The name of the species is derived from Lincoln, Nebraska. [3]

See also

Related Research Articles

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota and the type genus of the family Streptomycetaceae. Over 500 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin.

<span class="mw-page-title-main">Novobiocin</span>

Novobiocin, also known as albamycin or cathomycin, is an aminocoumarin antibiotic that is produced by the actinomycete Streptomyces niveus, which has recently been identified as a subjective synonym for S. spheroides a member of the class Actinomycetia. Other aminocoumarin antibiotics include clorobiocin and coumermycin A1. Novobiocin was first reported in the mid-1950s.

<span class="mw-page-title-main">Lincosamides</span>

Lincosamides are a class of antibiotics, which include lincomycin, clindamycin, and pirlimycin.

<span class="mw-page-title-main">Lincomycin</span>

Lincomycin is a lincosamide antibiotic that comes from the actinomycete Streptomyces lincolnensis. A related compound, clindamycin, is derived from lincomycin by using thionyl chloride to replace the 7-hydroxy group with a chlorine atom with inversion of chirality. It was released for medical use in September 1964.

<span class="mw-page-title-main">Avermectin</span> Drugs to treat parasitic worms and insect pests

The avermectins are a series of drugs and pesticides used to treat parasitic worms and insect pests. They are a group of 16-membered macrocyclic lactone derivatives with potent anthelmintic and insecticidal properties. These naturally occurring compounds are generated as fermentation products by Streptomyces avermitilis, a soil actinomycete. Eight different avermectins were isolated in four pairs of homologue compounds, with a major (a-component) and minor (b-component) component usually in ratios of 80:20 to 90:10. Other anthelmintics derived from the avermectins include ivermectin, selamectin, doramectin, eprinomectin, and abamectin.

Streptomyces scabies or Streptomyces scabiei is a streptomycete bacterium species found in soils around the world. Unlike most of the 500 or so Streptomyces species it is a plant pathogen causing corky lesions to form on tuber and root crops as well as decreasing the growth of seedlings. Along with other closely related species it causes the potato disease common scab, which is an economically important disease in many potato growing areas. It was first described in 1892, being classified as a fungus, before being renamed in 1914 and again in 1948. Several other species of Streptomyces cause similar diseases to S. scabies but other, more closely related species, do not.

<i>Streptomyces hygroscopicus</i> Species of bacterium

Streptomyces hygroscopicus is a bacterial species in the genus Streptomyces. It was first described by Hans Laurits Jensen in 1931.

Streptomyces avermitilis is a species of bacteria in the genus Streptomyces. This bacterium was discovered by Satoshi Ōmura in Shizuoka Prefecture, Japan.

Streptomyces turgidiscabies is a streptomycete bacterium species, causing scab in potatoes. It has flexuous spore, the latter which are cylindrical and smooth. The type strain is SY9113T. It is almost identical to Streptomyces reticuliscabiei; however, they are considered distinct species given the diseases they cause are different.

Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.

Streptomyces antibioticus is a gram-positive bacterium discovered in 1941 by Nobel-prize-winner Selman Waksman and H. Boyd Woodruff. Its name is derived from the Greek "strepto-" meaning "twisted", alluding to this genus' chain-like spore production, and "antibioticus", referring to this species' extensive antibiotic production. Upon its first characterization, it was noted that S. antibioticus produces a distinct soil odor.

Streptomyces aurantiacus is a bacterium species from the genus Streptomyces which produces aurantin, pamamycin-621, aurantimycin A, aurantimycin B, aurantimycin C, aurantimycin D, dihydronancimycin and ancimycin.

Streptomyces coeruleorubidus is a bacterium species from the genus of Streptomyces which has been isolated from marine sediment. Streptomyces coeruleorubidus produces the following medications: pacidamycin 1, baumycin B1, baumycin B2, baumycin C1, feudomycin A, feudomycin B, feudomycin C, ficellomycin, feudomycinone A, and rubomycin.

Streptomyces diastatochromogenes is a bacterium species from the genus of Streptomyces. Streptomyces diastatochromogenes produces polyketomycin, concanamycin A, concanamycin B, concanamycin C, momofulvenone A, azdimycin, toyocamycin and oligomycins.

Streptomyces iakyrus is a bacterium species from the genus of Streptomyces which has been isolated from soil Streptomyces iakyrus produces actinomycin G2, actinomycin G3, actinomycin G4, actinomycin G5, actinomycin G6, iakirine I, iakirine II and iakirine III.

Streptomyces lydicus is a bacterium species from the genus of Streptomyces which has been isolated from soil in the United States. Streptomyces lydicus produces actithiazic acid, natamycin, lydimycin, streptolydigin, and 1-deoxygalactonojirimycin. Streptomyces lydicus can be used as an agent against fungal plant pathogens like Fusarium, Pythium, Phytophthora, Rhizoctonia and Verticillum.

Streptomyces murinus is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces murinus produces the actinomycin X complex and glucose isomerase Streptomyces murinus can be used for its production of glucose isomerase in the food industry. Streptomyces murinus produces lankamycin and lankacidin.

Streptomyces olivaceoviridis is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces olivaceoviridis produces chitinase and xylanase.

Streptomyces rochei is a bacterium species from the genus of Streptomyces which has been isolated from soil in Russia. Streptomyces rochei produces borrelidin, butyrolactol A, butyrolactol B, uricase and streptothricin. Streptomyces rochei has antifungal activity against Fusarium oxysporum f.sp. lycopersici and Aspergillus fumigatus. Streptomyces rochei produces moenomycin and bambermycin. Streptomyces rochei produces amicetin A, amicetin B, amicetin C and streptolin. Streptomyces rochei produces endo-β-N-acetylglucosaminidase mithramycin, amicetin, bamicetin, and plicacetin.

<span class="mw-page-title-main">Streptomyces sp. myrophorea</span> Species of bacterium

Streptomyces sp. myrophorea, isolate McG1 is a species of Streptomyces, that originates from a (ethnopharmacology) folk cure in the townland of Toneel North in Boho, County Fermanagh. This area was previously occupied by the Druids and before this neolithic people who engraved the nearby Reyfad stones. Streptomyces sp. myrophorea is inhibitory to many species of ESKAPE pathogens, can grow at high pH (10.5) and can tolerate relatively high levels of radioactivity.

References

  1. Mason, D.J., A. Dietz, and C. DeBoer. 1963. Antimicrobial Agents and Chemotherapy, 1962, pages 554–559.
  2. Peschke, U.; Schmidt, H.; Zhang, H. Z.; Piepersberg, W. (1995). "Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11". Molecular Microbiology. 16 (6): 1137–1156. doi:10.1111/j.1365-2958.1995.tb02338.x. PMID   8577249. S2CID   45162659.
  3. "The glucose effect on lincomycin production by Streptomyces lincolnensis var. lincolnensis DMS 40 355 on synthetic media (PDF Download Available)". ResearchGate. Retrieved 2017-08-25.

"Streptomyces lincolnensis". National Center for Biotechnology Information (NCBI).