Streptomyces regensis

Last updated

Streptomyces regensis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Streptomycetales
Family: Streptomycetaceae
Genus: Streptomyces
Species:
S. regensis
Binomial name
Streptomyces regensis
Gupta et al. 1963 [1]
Type strain
ATCC 27461, BCRC 11890, CBS 749.72, CCRC 11890, DSM 40551 [2]

Streptomyces regensis is a bacterium species from the genus of Streptomyces . [1] [2] [3] Streptomyces regensis produces actinomycin and cyanohydrin phosphonate. [3] [4]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Bleomycin</span> Glycopeptide antibiotic used to treat various cancers

Bleomycin is a medication used to treat cancer. This includes Hodgkin's lymphoma, non-Hodgkin's lymphoma, testicular cancer, ovarian cancer, and cervical cancer among others. Typically used with other cancer medications, it can be given intravenously, by injection into a muscle or under the skin. It may also be administered inside the chest to help prevent the recurrence of a pleural effusion due to cancer; however talc is better for this.

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota, and the type genus of the family Streptomycetaceae. Over 700 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have very large genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin. Different strains of the same species may colonize very diverse environments.

<span class="mw-page-title-main">Novobiocin</span> Chemical compound

Novobiocin, also known as albamycin, is an aminocoumarin antibiotic that is produced by the actinomycete Streptomyces niveus, which has recently been identified as a subjective synonym for S. spheroides a member of the class Actinomycetia. Other aminocoumarin antibiotics include clorobiocin and coumermycin A1. Novobiocin was first reported in the mid-1950s.

<span class="mw-page-title-main">Phosphonate</span> Organic compound containing C–PO(OR)2 groups

In organic chemistry, phosphonates or phosphonic acids are organophosphorus compounds containing C−PO(OR)2 groups. Phosphonic acids, typically handled as salts, are generally nonvolatile solids that are poorly soluble in organic solvents, but soluble in water and common alcohols.

<span class="mw-page-title-main">Germacrene</span> Chemical compound

Germacrenes are a class of volatile organic hydrocarbons, specifically, sesquiterpenes. Germacrenes are typically produced in a number of plant species for their antimicrobial and insecticidal properties, though they also play a role as insect pheromones. Two prominent molecules are germacrene A and germacrene D.

<span class="mw-page-title-main">Isorhapontigenin</span> Chemical compound

Isorhapontigenin is a tetrahydroxylated stilbenoid with a methoxy group. It is an isomer of rhapontigenin and an analog of resveratrol. It is found in the Chinese herb Gnetum cleistostachyum, in Gnetum parvifolium and in the seeds of the palm Aiphanes aculeata.

<i>N</i>-Sulfinyl imine

N-Sulfinyl imines are a class of imines bearing a sulfinyl group attached to nitrogen. These imines display useful stereoselectivity reactivity and due to the presence of the chiral electron withdrawing N-sulfinyl group. They allow 1,2-addition of organometallic reagents to imines. The N-sulfinyl group exerts powerful and predictable stereodirecting effects resulting in high levels of asymmetric induction. Racemization of the newly created carbon-nitrogen stereo center is prevented because anions are stabilized at nitrogen. The sulfinyl chiral auxiliary is readily removed by simple acid hydrolysis. The addition of organometallic reagents to N-sulfinyl imines is the most reliable and versatile method for the asymmetric synthesis of amine derivatives. These building blocks have been employed in the asymmetric synthesis of numerous biologically active compounds.

Plantazolicin (PZN) is a natural antibiotic produced by the gram-positive soil bacterium Bacillus velezensis FZB42. PZN has specifically been identified as a selective bactericidal agent active against Bacillus anthracis, the causative agent of anthrax. This natural product is a ribosomally synthesized and post-translationally modified peptide (RiPP); it can be classified further as a thiazole/oxazole-modified microcin (TOMM) or a linear azole-containing peptide (LAP).

The Center for Pharmaceutical Research and Innovation (CPRI) is a University of Kentucky-based research center established by the University of Kentucky College of Pharmacy in 2012 to facilitate academic translational research and drug discovery/drug development. The UK CPRI specializes in natural product-based drug discovery from microbes found within unique environments including underground and surface coal mines, acid mine drainage and mine reclamation sites, thermal vents associated with underground coal mine fires and deep-well drilling for carbon sequestration. CPRI also provides core support for medicinal chemistry, assay development and screening, rational drug design, computational chemistry, and ADMET. The Center collaborates with investigators focused on drug discovery or development research in the areas of cancer, drug and alcohol addiction, cardiovascular disease, infectious disease, regenerative medicine and neurodegenerative disease.

<span class="mw-page-title-main">Cyclothiazomycin</span> Chemical compound

The cyclothiazomycins are a group of natural products, classified as thiopeptides, which are produced by various Streptomyces species of bacteria.

<span class="mw-page-title-main">Nosiheptide</span> Chemical compound

Nosiheptide is a thiopeptide antibiotic produced by the bacterium Streptomyces actuosus.

Streptomyces chartreusis is a bacterium species from the genus of Streptomyces which has been isolated from soil in Africa. Streptomyces chartreusis produces N-deacyltunicamycin, elsamicin A, aminoacylase and chartreusin.

Streptomyces iakyrus is a bacterium species from the genus of Streptomyces which has been isolated from soil Streptomyces iakyrus produces actinomycin G2, actinomycin G3, actinomycin G4, actinomycin G5, actinomycin G6, iakirine I, iakirine II and iakirine III.

<i>Streptomyces netropsis</i> Species of bacterium

Streptomyces netropsis is a bacterium species from the genus of Streptomyces. Streptomyces netropsis produces the antibiotics netropsin and distamycin A and the antifungal polyene mycoheptin.

Streptomyces pathocidini is a bacterium species from the genus of Streptomyces. Streptomyces pathocidini produces blasticidin S and pathocidin-(8-azaguanine).

Streptomyces platensis is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces platensis produces oxytetracycline, platensimycin, migrastatin, isomigrastatin, platencin, dorrigocin A, dorrigocin B and terramycine.

Streptomyces scopuliridis is a bacterium species from the genus of Streptomyces which has been isolated from woodland soil from Rainbow Bluff in Lynn in Alabama in the United States. Streptomyces scopuliridis produces bacteriocins, desotamides B, desotamides C, desotamides D, sesquiterpenoids and herbicidins.

Streptomyces spinoverrucosus is a bacterium species from the genus of Streptomyces which has been isolated from air in Kuwait. Streptomyces spinoverrucosus produces salinazinone A, salinazinone B, galvaquinone A, galvaquinone B, galvaquinone C, spithioneine A, spithioneine B and anthraquinones.

Streptomyces spiroverticillatus is a bacterium species from the genus of Streptomyces which has been isolated from soil in Japan. Streptomyces spiroverticillatus produces tautomycin.

Tylactone synthase or TYLS is a Type 1 polyketide synthase. TYLS is found in strains of Streptomyces fradiae and responsible for the synthesis of the macrolide ring, tylactone, the precursor of an antibiotic, tylosin. TYLS is composed of five large multi-functional proteins, TylGI-V. Each protein contains either one or two modules. Each module consists of a minimum of a Ketosynthase (KS), an Acyltransferase (AT), and an Acyl carrier protein (ACP) but may also contain a Ketoreductase (KR), Dehydrotase (DH), and Enoyl Reductase (ER) for additional reduction reactions. The domains of TYLS have similar activity domains to those found in other Type I polyketide synthase such as 6-Deoxyerythronolide B synthase (DEBS). The TYLS system also contains a loading module consisting of a ketosynthase‐like decarboxylase domain, an acyltransferase, and acyl carrier protein. The terminal Thioesterase terminates tylactone synthesis by cyclizing the macrolide ring. After the TYLS completes tylactone synthesis, the tylactone molecule is modified by oxidation at C-20 and C-23 and glycosylation of mycaminose, mycinose, and mycarose to produce tylosin.

References

  1. 1 2 LPSN bacterio.net
  2. 1 2 UniProt
  3. 1 2 Deutsche Sammlung von Mikroorganismen und Zellkulturen
  4. Cioni, Joel P.; Doroghazi, James R.; Ju, Kou-San; Yu, Xiaomin; Evans, Bradley S.; Lee, Jaeheon; Metcalf, William W. (28 February 2014). "Cyanohydrin Phosphonate Natural Product from". Journal of Natural Products. 77 (2): 243–249. doi:10.1021/np400722m. PMC   3993929 . PMID   24437999.

Further reading