Streptomyces viridosporus

Last updated

Streptomyces viridosporus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Streptomycetales
Family: Streptomycetaceae
Genus: Streptomyces
Species:
S. viridosporus
Binomial name
Streptomyces viridosporus
Pridham et al. 1958 [1]
Type strain
ATCC 27479, BCRC 11870, CBS 654.72, CCRC 11870, CCUG 37512, CGMCC 4.1770, CIP 108230, DSM 40243, IFO 13353, IMET 43514, ISP 5243, JCM 4859, KCC S-0859, KCCS-0859, KCTC 9145, LMG 20278, NBRC 13353, NCIMB 9824, NRRL 2414, NRRL B-2414, NRRL-ISP 5243, Parke Davis & Co.04889, PD 04889, RIA 1314, VKM Ac-1769, VKM Ac-618
Synonyms
  • Streptomyces ghanaensisWallhäusser et al. 1966 (Approved Lists 1980)

Streptomyces viridosporus is a bacterium species from the genus of Streptomyces . [1] [2] [3] Streptomyces viridosporus produces sistomycine and lignin peroxidase. [3] [4] [5] Streptomyces viridosporus can degrade lignin and humic acids. [6] [7] Streptomyces viridosporus also produces moenomycin A, a component of bambermycin. [8] [9] [10]

Contents

See also

Related Research Articles

Streptomyces ambofaciens is a bacterium species from the genus Streptomyces which has been isolated from soil from France. Streptomyces ambofaciens produces ambobactin, foromacidin A, foromacidin B, foromacidin C, 18-deoxospiramicin I, 17-methylenespiramycin I and congocidin.

Streptomyces azureus is a bacterium species from the genus of Streptomyces which has isolated from soil. Streptomyces azureus produces the antibiotic thiostrepton.

Streptomyces badius is a bacterium species from the genus of Streptomyces which has been isolated from soil in Kaukasus in Russia. Streptomyces badius produces cutinase. Streptomyces badius can metabolize quinoxaline.

Streptomyces cacaoi is a bacterium species from the genus of Streptomyces. Streptomyces cacaoi produces polyoxine.

Streptomyces chartreusis is a bacterium species from the genus of Streptomyces which has been isolated from soil in Africa. Streptomyces chartreusis produces N-deacyltunicamycin, elsamicin A, aminoacylase and chartreusin.

Streptomyces exfoliatus is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces exfoliatus has the ability to degrade poly(3-hydroxyalkanoate). This species produces exfoliatin and exfoliamycin.

Streptomyces griseocarneus is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces griseocarneus produces hydroxystreptomycin, alboverticillin, sphingomyelinase C and rotaventin.

Streptomyces griseorubiginosus is a bacterium species from the genus of Streptomyces which has been isolated from soil in Russia. Streptomyces griseorubiginosus produces arylsulfatase, biphenomycin A, cinerubin A and cinerubin B.

Streptomyces ipomoeae is a bacterium species from the genus of Streptomyces which has been isolated from rot from potatoes. Streptomyces ipomoeae produces thaxtomin C and ipomycin. Streptomyces ipomoeae can cause soft rot disease on sweet potatoes.

Streptomyces lydicus is a bacterium species from the genus of Streptomyces which has been isolated from soil in the United States. Streptomyces lydicus produces actithiazic acid, natamycin, lydimycin, streptolydigin, and 1-deoxygalactonojirimycin. Streptomyces lydicus can be used as an agent against fungal plant pathogens like Fusarium, Pythium, Phytophthora, Rhizoctonia and Verticillum.

Streptomyces murinus is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces murinus produces the actinomycin X complex and glucose isomerase Streptomyces murinus can be used for its production of glucose isomerase in the food industry. Streptomyces murinus produces lankamycin and lankacidin.

Streptomyces niveus is a bacterium species from the genus of Streptomyces which has been isolated from soil in the United States. Streptomyces niveus produces the aminocoumarin antibiotic novobiocin and the compounds nivetetracyclate A and nivetetracyclate B.

Streptomyces phaeochromogenes is a bacterium species from the genus of Streptomyces. Streptomyces phaeochromogenes produces tyrosinate, bromoperoxidase, ditryptophenalin, phaeochromycin A, phaeochromycin B, phaeochromycin C, phaeochromycin D and phaeochromycin E. Streptomyces phaeochromogenes also produces moenomycin and bambermycin.

Streptomyces rapamycinicus is a bacterium species from the genus of Streptomyces which has been isolated from soil from the Easter island. Streptomyces rapamycinicus produces sirolimus.

Streptomyces roseoviridis is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces roseoviridis produces histargin, an inhibitor of carboxypeptidase B.

Streptomyces tubercidicus is a bacterium species from the genus of Streptomyces which has been isolated from soil in Japan. Streptomyces tubercidicus produces tubercidin and ascomycin.

Streptomyces violaceolatus is a bacterium species from the genus of Streptomyces.

Streptomyces violaceoruber is a bacterium species from the genus of Streptomyces. Streptomyces violaceoruber produces protoactinorhodin, kendomycin, phospholipase A2, granaticin and methylenomycin A.

Streptomyces violaceusniger is a bacterium species from the genus of Streptomyces. Streptomyces violaceusniger has antifungal activity. Streptomyces violaceusniger produces isoafricanol and spirofungin.

Streptomyces virginiae is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces virginiae produces actithiazic acid, virginiamycins and cycloserine. Streptomyces virginiae also produces monensin A, monensin B, monensin C, monensin D, actithiazic acid.

References

  1. 1 2 LPSN bacterio.net
  2. UniProt
  3. 1 2 Deutsche Sammlung von Mikroorganismen und Zellkulturen
  4. McMillan, edited by Brian H. Davison, James W. Lee, Mark Finkelstein, James D. (2003). Biotechnology for Fuels and Chemicals the Twenty-Fourth Symposium. Totowa, NJ: Humana Press. ISBN   978-1-4612-0057-4.{{cite book}}: |first1= has generic name (help)CS1 maint: multiple names: authors list (link)
  5. Zerbini, José E.; Oliveira, Edna M. M.; Bon, Elba P. S. (1999). "Lignin Peroxidase Production by Streptomyces viridosporus T7A: Nitrogen Nutrition Optimization Using Glucose as Carbon Source". Applied Biochemistry and Biotechnology. 79 (1–3): 681–688. doi:10.1385/ABAB:79:1-3:681. PMID   15304688. S2CID   28555772.
  6. Mordarski, edited by M. Goodfellow, S.T. Williams, M. (1988). Actinomycetes in Biotechnology. Oxford: Elsevier Science. ISBN   978-0-08-098433-9.{{cite book}}: |first1= has generic name (help)CS1 maint: multiple names: authors list (link)
  7. Piccolo, Alessandro, ed. (1996). Humic Substances in Terrestrial Ecosystems. Burlington: Elsevier. ISBN   978-0-08-053423-7.
  8. Deutsche Sammlung von Mikroorganismen und Zellkulturen
  9. Ostash, Bohdan; Makitrinskyy, Roman; Walker, Suzanne; Fedorenko, Victor (May 2009). "Identification and characterization of Streptomyces ghanaensis ATCC14672 integration sites for three actinophage-based plasmids". Plasmid. 61 (3): 171–175. doi:10.1016/j.plasmid.2008.12.002. PMC   2699751 . PMID   19167423.
  10. ATCC

Further reading