Subi Jacob George

Last updated

Prof.
Subi Jacob George
Associate Professor
Subi Jacob.jpg
Nationality Indian
EducationBachelor Degree (B. Sc.) in Chemistry from Mahatma Gandhi University, Kerala

Master Degree (M. Sc.) in Organic Chemistry (First Rank) from Mahatma Gandhi University, Kerala
Ph.D. in Organic Chemistry from National Institute for Interdisciplinary Science and Technology, Trivandrum

Ph. D registered to

Contents

Cochin University of Science and Technology(CUSAT), Kochi, India
Alma mater Mahatma Gandhi University, Kerala, Cochin University of Science and Technology
SpouseTwintu Subi
Children1
Awards Shanti Swarup Bhatnagar Prize for Science and Technology 2020 [1]
Swarnajayanti Fellowship (2017),
Scopus NASI Young Scientist Awards 2015,
The APA Prize for Young Scientist 2015
Scientific career
Fields
Institutions
Eindhoven University of Technology, Netherlands
Thesis [Thesis Oligo(p-phenylenevinylene) Derived Organogels: A Novel Class of Functional Supramolecular Materials] (2000-2004)
Doctoral advisor Ayyappanpillai Ajayaghosh
Other academic advisors Bert Meijer

Subi Jacob George (born in Kerala) is an Indian organic chemist, known for his work in the fields of supramolecular chemistry, materials chemistry, and polymer chemistry. [2] [3] [4] His research interests includes organic and supramolecular synthesis, functional organic materials, supramolecular polymers, chiral amplification, hybrid materials, and optoelectronic materials.

Education and career

He obtained a bachelor's degree in chemistry and a master's degree in organic chemistry from Mahatma Gandhi University, Kerala. [5] In 2004, he was awarded a PhD in organic chemistry from the National Institute for Interdisciplinary Science and Technology, Trivandrum. [6] Since 2008, he is a professor at JNCASR.

Selected publications

See also

Related Research Articles

Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi–pi interactions and electrostatic effects.

<span class="mw-page-title-main">Chirality (chemistry)</span> Geometric property of some molecules and ions

In chemistry, a molecule or ion is called chiral if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality. The terms are derived from Ancient Greek χείρ (cheir) 'hand'; which is the canonical example of an object with this property.

<span class="mw-page-title-main">Enantioselective synthesis</span> Chemical reaction(s) which favor one chiral isomer over another

Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric products in unequal amounts."

Homochirality is a uniformity of chirality, or handedness. Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral. In biology, 19 of the 20 natural amino acids are homochiral, being L-chiral (left-handed), while sugars are D-chiral (right-handed). Homochirality can also refer to enantiopure substances in which all the constituents are the same enantiomer, but some sources discourage this use of the term.

<span class="mw-page-title-main">Supramolecular electronics</span> Field of chemistry

Supramolecular electronics is the experimental field of supramolecular chemistry that bridges the gap between molecular electronics and bulk plastics in the construction of electronic circuitry at the nanoscale. In supramolecular electronics, assemblies of pi-conjugated systems on the 5 to 100 nanometer scale are prepared by molecular self-assembly with the aim to fit these structures between electrodes. With single molecules as researched in molecular electronics at the 5 nanometer scale this would be impractical. Nanofibers can be prepared from polymers such as polyaniline and polyacetylene. Chiral oligo(p-phenylenevinylene)s self-assemble in a controlled fashion into (helical) wires. An example of actively researched compounds in this field are certain coronenes.

<span class="mw-page-title-main">Enantiomer self-disproportionation</span>

Enantiomer self-disproportionation is a process in stereochemistry describing the separation of a non-racemic mixture of enantiomers in an enantioenriched fraction and a more racemic fraction as a result of the formation of heterochiral or homochiral aggregates. This process is known to occur in achiral column chromatography.

In polymer chemistry and materials science, the term "polymer" refers to large molecules whose structure is composed of multiple repeating units. Supramolecular polymers are a new category of polymers that can potentially be used for material applications beyond the limits of conventional polymers. By definition, supramolecular polymers are polymeric arrays of monomeric units that are connected by reversible and highly directional secondary interactions–that is, non-covalent bonds. These non-covalent interactions include van der Waals interactions, hydrogen bonding, Coulomb or ionic interactions, π-π stacking, metal coordination, halogen bonding, chalcogen bonding, and host–guest interaction. The direction and strength of the interactions are precisely tuned so that the array of molecules behaves as a polymer in dilute and concentrated solution, as well as in the bulk.

<span class="mw-page-title-main">Takuzo Aida</span> Japanese polymer chemist

Takuzo Aida is a polymer chemist known for his work in the fields of supramolecular chemistry, materials chemistry and polymer chemistry. Aida, who is the Deputy Director for the RIKEN Center for Emergent Matter Science (CEMS) and a Distinguished University Professor at the University of Tokyo, has made pioneering contributions to the initiation, fundamental progress, and conceptual expansion of supramolecular polymerization. Aida has also been a leader and advocate for addressing critical environmental issues caused by plastic waste and microplastics in the oceans, soil, and food supply, through the development of dynamic, responsive, healable, reorganizable, and adaptive supramolecular polymers and related soft materials.

<span class="mw-page-title-main">Bert Meijer</span> Dutch organic chemist

Egbert (Bert) Willem Meijer is a Dutch organic chemist, known for his work in the fields of supramolecular chemistry, materials chemistry and polymer chemistry. Meijer, who is distinguished professor of Molecular Sciences at Eindhoven University of Technology (TU/e) and Academy Professor of the Royal Netherlands Academy of Arts and Sciences, is considered one of the founders of the field of supramolecular polymer chemistry. Meijer is a prolific author, sought-after academic lecturer and recipient of multiple awards in the fields of organic and polymer chemistry.

<span class="mw-page-title-main">Soai reaction</span>

In organic chemistry, the Soai reaction is the alkylation of pyrimidine-5-carbaldehyde with diisopropylzinc. The reaction is autocatalytic and leads to rapidly increasing amounts of the same enantiomer of the product. The product pyrimidyl alcohol is chiral and induces that same chirality in further catalytic cycles. Starting with a low enantiomeric excess ("ee") produces a product with very high enantiomeric excess. The reaction has been studied for clues about the origin of homochirality among certain classes of biomolecules.

<span class="mw-page-title-main">Chirality</span> Difference in shape from a mirror image

Chirality is a property of asymmetry important in several branches of science. The word chirality is derived from the Greek χείρ (kheir), "hand", a familiar chiral object.

Ayyappanpillai Ajayaghosh is a research scientist/academician in the domain of interdisciplinary chemistry, and the former Director of the National Institute for Interdisciplinary Science and Technology. He is known for his studies on supramolecular assemblies, organogels, photoresponsive materials, chemosensory and security materials systems and is an elected fellow of all the three major Indian science academies viz. the National Academy of Sciences, India, Indian National Science Academy and the Indian Academy of Sciences as well as The World Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards for his contributions to Chemical Sciences in 2007. He is the first chemist to receive the Infosys Science Prize for physical sciences, awarded by the Infosys Science Foundation. He received the TWAS Prize of The World Academy of Sciences in 2013 and the Goyal prize in 2019.

<span class="mw-page-title-main">Harry Anderson (chemist)</span> British chemist

Harry Laurence Anderson is a British chemist in the Department of Chemistry, University of Oxford. He is well known for his contributions in the syntheses of supramolecular systems, exploration of the extraordinary physical properties of large pi-conjugated systems, and synthesis of cyclo[18]carbon. He is a Professor of Chemistry at Keble College, Oxford.

<span class="mw-page-title-main">Kim Kimoon</span> South Korean chemist

Kim Kimoon is a South Korean chemist and professor in the Department of Chemistry at Pohang University of Science and Technology (POSTECH). He is the first and current director of the Center for Self-assembly and Complexity at the Institute for Basic Science. Kim has authored or coauthored 300 papers which have been cited more than 30,000 times and he holds a number of patents. His work has been published in Nature, Nature Chemistry, Angewandte Chemie, and JACS, among others. He has been a Clarivate Analytics Highly Cited Researcher in the field of chemistry in 2014, 2015, 2016.

<span class="mw-page-title-main">Supramolecular catalysis</span> Field of chemistry

Supramolecular catalysis is not a well-defined field but it generally refers to an application of supramolecular chemistry, especially molecular recognition and guest binding, toward catalysis. This field was originally inspired by enzymatic system which, unlike classical organic chemistry reactions, utilizes non-covalent interactions such as hydrogen bonding, cation-pi interaction, and hydrophobic forces to dramatically accelerate rate of reaction and/or allow highly selective reactions to occur. Because enzymes are structurally complex and difficult to modify, supramolecular catalysts offer a simpler model for studying factors involved in catalytic efficiency of the enzyme. Another goal that motivates this field is the development of efficient and practical catalysts that may or may not have an enzyme equivalent in nature.

<span class="mw-page-title-main">Ben Feringa</span> Dutch Nobel laureate in chemistry

Bernard Lucas Feringa is a Dutch synthetic organic chemist, specializing in molecular nanotechnology and homogeneous catalysis. He is the Jacobus van 't Hoff Distinguished Professor of Molecular Sciences, at the Stratingh Institute for Chemistry, University of Groningen, Netherlands, and an Academy Professor of the Royal Netherlands Academy of Arts and Sciences. He was awarded the 2016 Nobel Prize in Chemistry, together with Sir J. Fraser Stoddart and Jean-Pierre Sauvage, "for the design and synthesis of molecular machines".

<span class="mw-page-title-main">Nicola Armaroli</span> Italian chemist, research director (born 1966)

Nicola Armaroli is an Italian chemist, research director at the Italian National Research Council (CNR), director of the scientific magazine Sapere and member of the Italian National Academy of Sciences.

Light harvesting materials harvest solar energy that can then be converted into chemical energy through photochemical processes. Synthetic light harvesting materials are inspired by photosynthetic biological systems such as light harvesting complexes and pigments that are present in plants and some photosynthetic bacteria. The dynamic and efficient antenna complexes that are present in photosynthetic organisms has inspired the design of synthetic light harvesting materials that mimic light harvesting machinery in biological systems. Examples of synthetic light harvesting materials are dendrimers, porphyrin arrays and assemblies, organic gels, biosynthetic and synthetic peptides, organic-inorganic hybrid materials, and semiconductor materials. Synthetic and biosynthetic light harvesting materials have applications in photovoltaics, photocatalysis, and photopolymerization.

Nathalie Helene Katsonis is a Professor of Active Molecular Systems at the Stratingh Institute for Chemistry, University of Groningen. In 2016 she was awarded the Royal Netherlands Chemical Society Gold Medal.

Viedma ripening or attrition-enhanced deracemization is a chiral symmetry breaking phenomenon observed in solid/liquid mixtures of enantiomorphous crystals that are subjected to comminution. It can be classified in the wider area of spontaneous symmetry breaking phenomena observed in chemistry and physics.

References

  1. "Shanti Swarup Bhatnagar Prize 2020: 12 researchers receive India's highest science award". Hindustan Times. 26 September 2020.
  2. "Jawaharlal Nehru Centre for Advanced Scientific Research". www.jncasr.ac.in.
  3. jncasr, .in. "Dr. Subi Jacob George". jncasr.
  4. "Subi J. George - Google Scholar Citations". Scholar.google.co.in.
  5. "CSIR – National Institute for Interdisciplinary Science and Technology (NIIST) Ajayaghosh A. - Alumni". niist.saturn.co.in.
  6. "Subi Jacob George - Academic profile". www.jncasr.ac.in.
  7. Koch, Norbert; Schneider, Hans-Jörg; Shahinpoor, Mohsen; Giuseppone, Nicholas; de Oteyza, Dimas; Chen, Wei; Patil, Satish; George, Subi; Naaman, Ron; Cuniberti, Gianaurelio; Andrienko, Denis; List, Emil J. W; Facchetti, Antoni (2014). Supramolecular Materials for Opto-Electronics. RSC. OCLC   910581757.
  8. Katsonis, Nathalie; Xu, Hong; Haak, Robert M.; Kudernac, Tibor; Tomović, Željko; George, Subi; Van der Auweraer, Mark; Schenning, Albert P. H. J.; Meijer, E. W.; Feringa, Ben L.; De Feyter, Steven (2008). "Emerging Solvent-Induced Homochirality by the Confinement of Achiral Molecules Against a Solid Surface" (PDF). Angewandte Chemie International Edition. 47 (27): 4997–5001. doi:10.1002/anie.200800255. hdl: 11370/5a2f9f46-93d8-4f91-9768-9b7bb279f774 . PMID   18504789. S2CID   205349119.
  9. George, Subi J.; Ajayaghosh, Ayyappanpillai; Jonkheijm, Pascal; Schenning, Albertus P. H. J.; Meijer, E. W. (2004). "Coiled-Coil Gel Nanostructures of Oligo(p-phenylenevinylene)s: Gelation-Induced Helix Transition in a Higher-Order Supramolecular Self-Assembly of a Rigidπ-Conjugated System". Angewandte Chemie. 116 (26): 3504–3507. Bibcode:2004AngCh.116.3504G. doi:10.1002/ange.200453874.
  10. George, Subi J.; Tomović, Željko; Smulders, Maarten M. J.; de Greef, Tom F. A.; Leclère, Philippe E. L. G.; Meijer, E. W.; Schenning, Albertus P. H. J. (2007). "Helicity Induction and Amplification in an Oligo(p-phenylenevinylene) Assembly through Hydrogen-Bonded Chiral Acids". Angewandte Chemie International Edition. 46 (43): 8206–8211. doi:10.1002/anie.200702730. PMID   17886328.
  11. "Subi J. George". Angewandte Chemie. 129 (38): 11456. 10 April 2017. Bibcode:2017AngCh.12911456.. doi:10.1002/ange.201703016.
  12. George, Subi Jacob (1 October 2004). "Oligo(p-phenylenevinylene) Derived Organogels: A Novel Class of Functional Supramolecular Materials". Dyuthi. Cochin University of Science and Technology . Retrieved 31 May 2015.