Sum rules (quantum field theory)

Last updated

In quantum field theory, a sum rule is a relation between a static quantity and an integral over a dynamical quantity. Therefore, they have a form such as:

Contents

where is the dynamical quantity, for example a structure function characterizing a particle, and is the static quantity, for example the mass or the charge of that particle.

Quantum field theory sum rules should not be confused with sum rules in quantum chromodynamics or quantum mechanics.

Properties

Many sum rules exist. The validity of a particular sum rule can be sound if its derivation is based on solid assumptions, or on the contrary, some sum rules have been shown experimentally to be incorrect, due to unwarranted assumptions made in their derivation. The list of sum rules below illustrate this.

Sum rules are usually obtained by combining a dispersion relation with the optical theorem, [1] using the operator product expansion or current algebra. [2]

Quantum field theory sum rules are useful in a variety of ways. They permit to test the theory used to derive them, e.g. quantum chromodynamics, or an assumption made for the derivation, e.g. Lorentz invariance. They can be used to study a particle, e.g. how does the spins of partons make up the spin of the proton. They can also be used as a measurement method. If the static quantity is difficult to measure directly, measuring and integrating it offers a practical way to obtain (providing that the particular sum rule linking to is reliable).

Although in principle, is a static quantity, the denomination of sum rule has been extended to the case where is a probability amplitude, e.g. the probability amplitude of Compton scattering, [1] see the list of sum rules below.

List of sum rules

(The list is not exhaustive)

, where is the quark () or gluon () total angular momentum, is the quark or gluon unpolarized helicity-conserving GDP and is the quark or gluon unpolarized helicity-flip GDP. The kinematics variables skewness and Mandestam's are set to zero.

See also

References

  1. 1 2 Pasquini, Barbara; Vanderhaeghen, Marc (2018). "Dispersion Theory in Electromagnetic Interactions". Annual Review of Nuclear and Particle Science. 68: 75–103. arXiv: 1805.10482 . Bibcode:2018ARNPS..68...75P. doi:10.1146/annurev-nucl-101917-020843.
  2. 1 2 3 4 5 6 7 8 Deur, Alexandre; Brodsky, Stanley J.; De Téramond, Guy F. (2019). "The spin structure of the nucleon". Reports on Progress in Physics. 82 (7). arXiv: 1807.05250 . Bibcode:2019RPPh...82g6201D. doi:10.1088/1361-6633/ab0b8f. PMID   30818290.
  3. Adler, Stephen L. (1966). "Sum Rules Giving Tests of Local Current Commutation Relations in High-Energy Neutrino Reactions". Physical Review. 143 (4): 1144–1155. Bibcode:1966PhRv..143.1144A. doi:10.1103/PhysRev.143.1144.
  4. Baldin, A. M. (1960). "Polarizability of nucleons" . Nuclear Physics. 18: 310–317. Bibcode:1960NucPh..18..310B. doi:10.1016/0029-5582(60)90408-9.
  5. Holstein, Barry R.; Scherer, Stefan (2014). "Hadron Polarizabilities". Annual Review of Nuclear and Particle Science. 64 (1): 51–81. arXiv: 1401.0140 . Bibcode:2014ARNPS..64...51H. doi:10.1146/annurev-nucl-102313-025555.
  6. Bjorken, J. D. (1966). "Applications of the Chiral 𝑈⁡(6)⊗𝑈⁡(6) Algebra of Current Densities" . Physical Review. 148 (4): 1467–1478. doi:10.1103/PhysRev.148.1467.
  7. J. D. Bjorken (1970) “Inelastic scattering of polarized leptons from polarized nucleons” Phys. Rev. D 1, 1376
  8. Broadhurst, D. J.; Kataev, A. L. (2002). "Bjorken unpolarized and polarized sum rules: Comparative analysis of large N(F) expansions". Phys. Lett. B. 544 (1–2): 154–160. arXiv: hep-ph/0207261 . Bibcode:2002PhLB..544..154B. doi:10.1016/S0370-2693(02)02478-4. S2CID   17436687.
  9. Burkhardt, Hugh; Cottingham, W.N (1970). "Sum rules for forward virtual compton scattering" . Annals of Physics. 56 (2): 453–463. Bibcode:1970AnPhy..56..453B. doi:10.1016/0003-4916(70)90025-4.
  10. 1 2 Guichon, P.A.M.; Liu, G.Q.; Thomas, A.W. (1995). "Virtual compton scattering and generalized polarizabilities of the proton". Nuclear Physics A. 591 (4): 606–638. arXiv: nucl-th/9605031 . Bibcode:1995NuPhA.591..606G. doi:10.1016/0375-9474(95)00217-O.
  11. Efremov, A. V.; Teryaev, O. V.; Leader, Elliot (1997). "Exact sum rule for transversely polarized DIS". Physical Review D. 55 (7): 4307–4314. arXiv: hep-ph/9607217 . Bibcode:1997PhRvD..55.4307E. doi:10.1103/PhysRevD.55.4307.
  12. Ellis, John; Jaffe, Robert (1974). "Sum rule for deep-inelastic electroproduction from polarized protons". Physical Review D. 9 (5): 1444–1446. Bibcode:1974PhRvD...9.1444E. doi:10.1103/PhysRevD.9.1444.
  13. Fubini, S.; Furlan, G.; Rossetti, C. (1965). "A dispersion theory of symmetry breaking" . Il Nuovo Cimento A. 40 (4): 1171–1193. Bibcode:1965NCimA..40.1171F. doi:10.1007/BF02824674.
  14. S. B. Gerasimov (1965) “A sum rule for magnetic moments and the damping of the nucleon magnetic moment in nuclei” Sov. J. Nucl. Phys. 2, 430 (1966) [Yad. Fiz. 2, 598 (1965)]
  15. Drell, S. D.; Hearn, A. C. (1966). "Exact Sum Rule for Nucleon Magnetic Moments". Physical Review Letters. 16 (20): 908–911. Bibcode:1966PhRvL..16..908D. doi:10.1103/PhysRevLett.16.908. OSTI   1444298.
  16. Hosoda, Masataka; Yamamoto, Kunio (1966). "Sum Rule for the Magnetic Moment of the Dirac Particle". Progress of Theoretical Physics. 36 (2): 425–426. Bibcode:1966PThPh..36..425H. doi: 10.1143/PTP.36.425 .
  17. Gottfried, Kurt (1967). "Sum Rule for High-Energy Electron-Proton Scattering" . Physical Review Letters. 18 (25): 1174–1177. Bibcode:1967PhRvL..18.1174G. doi:10.1103/PhysRevLett.18.1174.
  18. Arneodo, M; et, al. (1997). "Accurate measurement of F2d/F2p and Rd-Rp". Nuclear Physics B. 487 (3): 3–26. arXiv: hep-ex/9611022 . doi:10.1016/S0550-3213(96)00673-6.
  19. Gross, David J.; Smith, C.H.Llewellyn (1969). "High-energy neutrino-nucleon scattering, current algebra and partons". Nuclear Physics B. 14 (2): 337–347. Bibcode:1969NuPhB..14..337G. doi:10.1016/0550-3213(69)90213-2.
  20. Kim, J. H.; et, al. (1998). "A Measurement of alpha(s)(Q**2) from the Gross-Llewellyn Smith sum rule". Phys. Rev. Lett. 81: 3595–3598. arXiv: hep-ex/9808015 . doi:10.1103/PhysRevLett.81.3595.
  21. Collins, John C.; Soper, Davison E. (1982). "Parton distribution and decay functions" . Nuclear Physics B. 194 (3): 445–492. Bibcode:1982NuPhB.194..445C. doi:10.1016/0550-3213(82)90021-9.
  22. Ji, Xiangdong (1997-01-27). "Gauge-Invariant Decomposition of Nucleon Spin". Physical Review Letters. 78 (4): 610–613. arXiv: hep-ph/9603249 . Bibcode:1997PhRvL..78..610J. doi:10.1103/PhysRevLett.78.610. S2CID   15573151.
  23. Ji, X. D. (1995). "QCD Analysis of the Mass Structure of the Nucleon". Physical Review Letters. 74 (6): 1071–1074. arXiv: hep-ph/9410274 . Bibcode:1995PhRvL..74.1071J. doi:10.1103/PhysRevLett.74.1071. PMID   10058927.
  24. Ji, X. D. (1995). "Breakup of hadron masses and the energy-momentum tensor of QCD". Physical Review D. 52 (1): 271–281. arXiv: hep-ph/9502213 . Bibcode:1995PhRvD..52..271J. doi:10.1103/PhysRevD.52.271. PMID   10019040.
  25. Schwinger, Julian (1975). "Source Theory Discussion of Deep Inelastic Scattering with Polarized Particles". Proceedings of the National Academy of Sciences of the United States of America. 72 (4): 1559–1563. Bibcode:1975PNAS...72.1559S. doi: 10.1073/pnas.72.4.1559 . JSTOR   64895. PMC   432577 . PMID   16592243.
  26. Sulkosky, V.; et, al. (2021). "Measurement of the generalized spin polarizabilities of the neutron in the low-Q2 region". Nature Physics. 17 (6): 687-692. arXiv: 2103.03333 . doi:10.1038/s41567-021-01245-9.
  27. Wandzura, S.; Wilczek, F. (1977). "Sum rules for spin-dependent electroproduction- test of relativistic constituent quarks" . Physics Letters B. 72 (2): 195–198. Bibcode:1977PhLB...72..195W. doi:10.1016/0370-2693(77)90700-6.