Superacid

Last updated

In chemistry, a superacid (according to the original definition) is an acid with an acidity greater than that of 100% pure sulfuric acid (H2SO4), [1] which has a Hammett acidity function (H0) of −12. According to the modern definition, a superacid is a medium in which the chemical potential of the proton is higher than in pure sulfuric acid. [2] Commercially available superacids include trifluoromethanesulfonic acid (CF3SO3H), also known as triflic acid, and fluorosulfuric acid (HSO3F), both of which are about a thousand times stronger (i.e. have more negative H0 values) than sulfuric acid. Most strong superacids are prepared by the combination of a strong Lewis acid and a strong Brønsted acid. A strong superacid of this kind is fluoroantimonic acid. Another group of superacids, the carborane acid group, contains some of the strongest known acids. Finally, when treated with anhydrous acid, zeolites (microporous aluminosilicate minerals) will contain superacidic sites within their pores. These materials are used on massive scale by the petrochemical industry in the upgrading of hydrocarbons to make fuels.[ citation needed ]

Contents

History

The term superacid was originally coined by James Bryant Conant in 1927 to describe acids that were stronger than conventional mineral acids. [1] This definition was refined by Ronald Gillespie in 1971, as any acid with an H0 value lower than that of 100% sulfuric acid (−11.93). [3] George A. Olah prepared the so-called "magic acid", so named for its ability to attack hydrocarbons, by mixing antimony pentafluoride (SbF5) and fluorosulfonic acid (FSO3H). [4] The name was coined after a candle was placed in a sample of magic acid after a Christmas party. The candle dissolved, showing the ability of the acid to protonate alkanes, which under normal acidic conditions do not protonate to any extent.

At 140 °C (284 °F), FSO3H–SbF5 protonates methane to give the tertiary-butyl carbocation, a reaction that begins with the protonation of methane: [4]

CH4 + H+CH+
5
CH+
5
CH+
3
+ H2
CH+
3
+ 3 CH4 → (CH3)3C+ + 3H2

Common uses of superacids include providing an environment to create, maintain, and characterize carbocations. Carbocations are intermediates in numerous useful reactions such as those forming plastics and in the production of high-octane gasoline.

Origin of extreme acid strength

Traditionally, superacids are made from mixing a Brønsted acid with a Lewis acid. The function of the Lewis acid is to bind to and stabilize the anion that is formed upon dissociation of the Brønsted acid, thereby removing a proton acceptor from the solution and strengthening the proton donating ability of the solution. For example, fluoroantimonic acid, nominally (H
2
FSbF
6
), can produce solutions with a H0 lower than –28, giving it a protonating ability over a billion times greater than 100% sulfuric acid. [5] [6] Fluoroantimonic acid is made by dissolving antimony pentafluoride (SbF5) in anhydrous hydrogen fluoride (HF). In this mixture, HF releases its proton (H+) concomitant with the binding of F by the antimony pentafluoride. The resulting anion (SbF
6
) delocalizes charge effectively and holds onto its electron pairs tightly, making it an extremely poor nucleophile and base. The mixture owes its extraordinary acidity to the weakness of proton acceptors (and electron pair donors) (Brønsted or Lewis bases) in solution. Because of this, the protons in fluoroantimonic acid and other superacids are popularly described as "naked", being readily donated to substances not normally regarded as proton acceptors, like the C–H bonds of hydrocarbons. However, even for superacidic solutions, protons in the condensed phase are far from being unbound. For instance, in fluoroantimonic acid, they are bound to one or more molecules of hydrogen fluoride. Though hydrogen fluoride is normally regarded as an exceptionally weak proton acceptor (though a somewhat better one than the SbF6 anion), dissociation of its protonated form, the fluoronium ion H2F+ to HF and the truly naked H+ is still a highly endothermic process (ΔG° = +113 kcal/mol), and imagining the proton in the condensed phase as being "naked" or "unbound", like charged particles in a plasma, is highly inaccurate and misleading. [7]

More recently, carborane acids have been prepared as single component superacids that owe their strength to the extraordinary stability of the carboranate anion, a family of anions stabilized by three-dimensional aromaticity, as well as by electron-withdrawing group typically attached thereto.

In superacids, the proton is shuttled rapidly from proton acceptor to proton acceptor by tunneling through a hydrogen bond via the Grotthuss mechanism, just as in other hydrogen-bonded networks, like water or ammonia. [8]

Applications

In petrochemistry, superacidic media are used as catalysts, especially for alkylations. Typical catalysts are sulfated oxides of titanium and zirconium or specially treated alumina or zeolites. The solid acids are used for alkylating benzene with ethene and propene as well as difficult acylations, e.g. of chlorobenzene. [9] In Organic Chemistry, superacids are used as a means of protonating alkanes to promote the use of carbocations in situ during reactions. The resulting carbocations are of much use in organic synthesis of numerous organic compounds, the high acidity of the superacids helps to stabilize the highly reactive and unstable carbocations for future reactions.

Examples

The following are examples of superacids. Each is listed with its Hammett acidity function, [10] where a smaller value of H0 (in these cases, more negative) indicates a stronger acid.

See also

Related Research Articles

<span class="mw-page-title-main">Acid</span> Chemical compound giving a proton or accepting an electron pair

An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen ion, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction between an acid and a base

In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

<span class="mw-page-title-main">Carbocation</span> Ion with a positively charged carbon atom

A carbocation is an ion with a positively charged carbon atom. Among the simplest examples are the methenium CH+
3
, methanium CH+
5
and vinyl C
2
H+
3
cations. Occasionally, carbocations that bear more than one positively charged carbon atom are also encountered.

<span class="mw-page-title-main">Hydrofluoric acid</span> Solution of hydrogen fluoride in water

Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colorless, acidic and highly corrosive. It is used to make most fluorine-containing compounds; examples include the commonly used pharmaceutical antidepressant medication fluoxetine (Prozac) and the material PTFE (Teflon). Elemental fluorine is produced from it. It is commonly used to etch glass and silicon wafers.

In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. Because electrophiles accept electrons, they are Lewis acids. Most electrophiles are positively charged, have an atom that carries a partial positive charge, or have an atom that does not have an octet of electrons.

In chemistry, protonation (or hydronation) is the adding of a proton (or hydron, or hydrogen cation), usually denoted by H+, to an atom, molecule, or ion, forming a conjugate acid. (The complementary process, when a proton is removed from a Brønsted–Lowry acid, is deprotonation.) Some examples include

<span class="mw-page-title-main">Magic acid</span> Chemical compound

Magic acid (FSO3H·SbF5) is a superacid consisting of a mixture, most commonly in a 1:1 molar ratio, of fluorosulfuric acid (HSO3F) and antimony pentafluoride (SbF5). This conjugate Brønsted–Lewis superacid system was developed in the 1960s by the George Olah lab at Case Western Reserve University, and has been used to stabilize carbocations and hypercoordinated carbonium ions in liquid media. Magic acid and other superacids are also used to catalyze isomerization of saturated hydrocarbons, and have been shown to protonate even weak bases, including methane, xenon, halogens, and molecular hydrogen.

<span class="mw-page-title-main">Fluorosulfuric acid</span> Chemical compound

Fluorosulfuric acid (IUPAC name: sulfurofluoridic acid) is the inorganic compound with the chemical formula HSO3F. It is one of the strongest acids commercially available. It is a tetrahedral molecule and is closely related to sulfuric acid, H2SO4, substituting a fluorine atom for one of the hydroxyl groups. It is a colourless liquid, although commercial samples are often yellow.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

Antimony pentafluoride is the inorganic compound with the formula SbF5. This colourless, viscous liquid is a strong Lewis acid and a component of the superacid fluoroantimonic acid, formed upon mixing liquid HF with liquid SbF5 in 1:1 ratio. It is notable for its strong Lewis acidity and the ability to react with almost all known compounds.

<span class="mw-page-title-main">Hydrogen fluoride</span> Chemical compound

Hydrogen fluoride (fluorane) is an inorganic compound with chemical formula HF. It is a very poisonous, colorless gas or liquid that dissolves in water to yield an aqueous solution termed hydrofluoric acid. It is the principal industrial source of fluorine, often in the form of hydrofluoric acid, and is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers, e.g. polytetrafluoroethylene (PTFE). HF is also widely used in the petrochemical industry as a component of superacids. Due to strong and extensive hydrogen bonding, it boils at near room temperature, much higher than other hydrogen halides.

<span class="mw-page-title-main">Carbenium ion</span> Class of ions

A carbenium ion is a positive ion with the structure RR′R″C+, that is, a chemical species with carbon atom having three covalent bonds, and it bears a +1 formal charge. But IUPAC confuses coordination number with valence, incorrectly considering carbon in carbenium as trivalent.

<span class="mw-page-title-main">Fluoroantimonic acid</span> Chemical compound

Fluoroantimonic acid is a mixture of hydrogen fluoride and antimony penta­fluoride, containing various cations and anions. This mixture is a superacid that, in terms of corrosiveness, is trillions of times stronger than pure sulfuric acid when measured by its Hammett acidity function. It even protonates some hydro­carbons to afford pentacoordinate carbo­cations. Like its precursor hydrogen fluoride, it attacks glass, but can be stored in containers lined with PTFE (Teflon) or PFA.

<span class="mw-page-title-main">Tantalum(V) fluoride</span> Chemical compound

Tantalum(V) fluoride is the inorganic compound with the formula TaF5. It is one of the principal molecular compounds of tantalum. Characteristic of some other pentafluorides, the compound is volatile but exists as an oligomer in the solid state.

The Hammett acidity function (H0) is a measure of acidity that is used for very concentrated solutions of strong acids, including superacids. It was proposed by the physical organic chemist Louis Plack Hammett and is the best-known acidity function used to extend the measure of Brønsted–Lowry acidity beyond the dilute aqueous solutions for which the pH scale is useful.

<span class="mw-page-title-main">Fluoroboric acid</span> Chemical compound

Fluoroboric acid or tetrafluoroboric acid is an inorganic compound with the simplified chemical formula H+[BF4]. Unlike other strong acids like H2SO4 or HClO4, the pure tetrafluoroboric acid does not exist. The term "fluoroboric acid" refers to a range of chemical compounds, depending on the solvent. The H+ in the simplified formula of fluoroboric acid represents the solvated proton. The solvent can be any suitable Lewis base. For instance, if the solvent is water, fluoroboric acid can be represented by the formula [H3O]+[BF4], although more realistically, several water molecules solvate the proton: [H(H2O)n]+[BF4]. The ethyl ether solvate is also commercially available, where the fluoroboric acid can be represented by the formula [H( 2O)n]+[BF4], where n is most likely 2.

In chemistry, the hydron, informally called proton, is the cationic form of atomic hydrogen, represented with the symbol H+
. The general term "hydron", endorsed by the IUPAC, encompasses cations of hydrogen regardless of their isotopic composition: thus it refers collectively to protons (1H+) for the protium isotope, deuterons (2H+ or D+) for the deuterium isotope, and tritons (3H+ or T+) for the tritium isotope.

An acidity function is a measure of the acidity of a medium or solvent system, usually expressed in terms of its ability to donate protons to a solute. The pH scale is by far the most commonly used acidity function, and is ideal for dilute aqueous solutions. Other acidity functions have been proposed for different environments, most notably the Hammett acidity function, H0, for superacid media and its modified version H for superbasic media. The term acidity function is also used for measurements made on basic systems, and the term basicity function is uncommon.

Acid strength is the tendency of an acid, symbolised by the chemical formula , to dissociate into a proton, , and an anion, . The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions.

<span class="mw-page-title-main">Carborane acid</span> Class of chemical compounds

Carborane acidsH(CXB
11
Y
5
Z
6
)
(X, Y, Z = H, Alk, F, Cl, Br, CF3) are a class of superacids, some of which are estimated to be at least one million times stronger than 100% pure sulfuric acid in terms of their Hammett acidity function values (H0 ≤ –18) and possess computed pKa values well below –20, establishing them as some of the strongest known Brønsted acids. The best-studied example is the highly chlorinated derivative H(CHB
11
Cl
11
)
. The acidity of H(CHB
11
Cl
11
)
was found to vastly exceed that of triflic acid, CF
3
SO
3
H
, and bistriflimide, (CF
3
SO
2
)
2
NH
, compounds previously regarded as the strongest isolable acids.

References

  1. 1 2 Hall NF, Conant JB (1927). "A Study of Superacid Solutions". Journal of the American Chemical Society. 49 (12): 3062–70. doi:10.1021/ja01411a010.
  2. Himmel D, Goll SK, Leito I, Krossing I (2010). "A Unified pH Scale for All Phases". Angew. Chem. Int. Ed. 49 (38): 6885–6888. doi:10.1002/anie.201000252. PMID   20715223.
  3. Gillespie, R. J.; Peel, T. E.; Robinson, E. A. (1971-10-01). "Hammett acidity function for some super acid systems. I. Systems H2SO4-SO3, H2SO4-HSO3F, H2SO4-HSO3Cl, and H2SO4-HB(HSO4)4". Journal of the American Chemical Society. 93 (20): 5083–5087. doi:10.1021/ja00749a021. ISSN   0002-7863. The work of Jorgenson and Hartter formed the basis for the present work, the object of which was to extend the range of acidity function measurements into the super acid region, i.e., into the region of acidities greater than that of 100% H2SO4.
  4. 1 2 George A. Olah, Schlosberg RH (1968). "Chemistry in Super Acids. I. Hydrogen Exchange and Polycondensation of Methane and Alkanes in FSO3H–SbF5 ("Magic Acid") Solution. Protonation of Alkanes and the Intermediacy of CH5+ and Related Hydrocarbon Ions. The High Chemical Reactivity of "Paraffins" in Ionic Solution Reactions". Journal of the American Chemical Society. 90 (10): 2726–7. doi:10.1021/ja01012a066.
  5. Olah, George A. (2005). "Crossing Conventional Boundaries in Half a Century of Research". Journal of Organic Chemistry. 70 (7): 2413–2429. doi:10.1021/jo040285o. PMID   15787527.
  6. Herlem, Michel (1977). "Are reactions in superacid media due to protons or to powerful oxidising species such as SO3 or SbF5?". Pure and Applied Chemistry. 49: 107–113. doi: 10.1351/pac197749010107 . S2CID   98483167.
  7. Ruff, F. (Ferenc) (1994). Organic reactions : equilibria, kinetics, and mechanism. Csizmadia, I. G. Amsterdam: Elsevier. ISBN   0444881743. OCLC   29913262.
  8. Schneider, Michael (2000). "Getting the Jump on Superacids". Pittsburgh Supercomputing Center. Archived from the original on 23 August 2018. Retrieved 20 November 2017.
  9. Michael Röper, Eugen Gehrer, Thomas Narbeshuber, Wolfgang Siegel "Acylation and Alkylation" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000. doi : 10.1002/14356007.a01_185
  10. Gillespie, R. J.; Peel, T. E. (1973-08-01). "Hammett acidity function for some superacid systems. II. Systems sulfuric acid-[fsa], potassium fluorosulfate-[fsa], [fsa]-sulfur trioxide, [fsa]-arsenic pentafluoride, [sfa]-antimony pentafluoride and [fsa]-antimony pentafluoride-sulfur trioxide". Journal of the American Chemical Society. 95 (16): 5173–5178. doi:10.1021/ja00797a013. ISSN   0002-7863.
  11. Fuller, Maurice (2022). Coordination Chemistry and its Application (PDF). Bibliotex. pp. 45, 46.
  12. Liang, Joan-Nan Jack (1976). The Hammett Acidity Function for Hydrofluoric Acid and some related Superacid Systems (Ph.D. Thesis, advisor: R. J. Gillespie) (PDF). Hamilton, Ontario: McMaster University. p. 109.
  13. Olah, George (2009). SUPERACID CHEMISTRY (PDF). John Wiley & Sons, Inc. p. 47.