Molecular symmetry in physics and chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in the application of Quantum Mechanics in physics and chemistry, for example it can be used to predict or explain many of a molecule's properties, such as its dipole moment and its allowed spectroscopic transitions (based on selection rules), without doing the exact rigorous calculations (which, in some cases, may not even be possible). To do this it is necessary to classify the states of the molecule using the irreducible representations from the character table of the symmetry group of the molecule. Among all the molecular symmetries, diatomic molecules show some distinct features and they are relatively easier to analyze.
The physical laws governing a system is generally written as a relation (equations, differential equations, integral equations etc.). An operation on the ingredients of this relation, which keeps the form of the relations invariant is called a symmetry transformation or a symmetry of the system.
Symmetry is a fundamentally important concept in quantum mechanics. It can predict conserved quantities and provide quantum numbers. It can predict degeneracies of eigenstates and gives insights about the matrix elements of the Hamiltonian without calculating them. Rather than looking into individual symmetries, it is sometimes more convenient to look into the general relations between the symmetries. It turns out that Group theory is the most efficient way of doing this.
A group is a mathematical structure (usually denoted in the form (G,*)) consisting of a set G and a binary operation (sometimes loosely called 'multiplication'), satisfying the following properties:
The set of all symmetry transformations of a Hamiltonian has the structure of a group, with group multiplication equivalent to applying the transformations one after the other. The group elements can be represented as matrices, so that the group operation becomes the ordinary matrix multiplication. In quantum mechanics, the evolution of an arbitrary superposition of states are given by unitary operators, so each of the elements of the symmetry groups are unitary operators. Now any unitary operator can be expressed as the exponential of some Hermitian operator. So, the corresponding Hermitian operators are the 'generators' of the symmetry group. These unitary transformations act on the Hamiltonian operator in some Hilbert space in a way that the Hamiltonian remains invariant under the transformations. In other words, the symmetry operators commute with the Hamiltonian. If represents the unitary symmetry operator and acts on the Hamiltonian , then;
These operators have the above-mentioned properties of a group:
So, by the symmetry of a system, we mean a set of operators, each of which commutes with the Hamiltonian, and they form a symmetry group. This group may be abelian or non-abelian. Depending upon which one it is, the properties of the system changes (for example, if the group is abelian, there would be no degeneracy). Corresponding to every different kind of symmetry in a system, we can find a symmetry group associated with it.
It follows that the generator of the symmetry group also commutes with the Hamiltonian. Now, it follows that:
The observable corresponding to the generator Hermitian matrix, is conserved. |
---|
The derivative of the expectation value of the operator T can be written as: Now, So, as H is also Hermitian. So we have, Now, as stated above, and if the operator T does not have any explicit time-dependence; is a constant, independent of what the state may be. So the observable corresponding to the operator T, is conserved. |
Some specific examples can be systems having rotational, translational invariance etc. For a rotationally invariant system, the symmetry group of the Hamiltonian is the general rotation group. Now, if (say) the system is invariant about any rotation about Z-axis (i.e., the system has axial symmetry), then the symmetry group of the Hamiltonian is the group of rotation about the symmetry axis. Now, this group is generated by the Z-component of the orbital angular momentum, (general group element ). Thus, commutes with for this system and Z-component of the angular momentum is conserved. Similarly, translation symmetry gives rise to conservation of linear momentum, inversion symmetry gives rise to parity conservation and so on.
A molecule at equilibrium in a certain electronic state usually has some geometrical symmetry. This symmetry is described by a certain point group which consists of operations (called symmetry operations) that produce a spatial orientation of the molecule that is indistinguishable from the starting configuration. There are five types of point group symmetry operation: identity, rotation, reflection, inversion and improper rotation or rotation-reflection. Common to all symmetry operations is that the geometrical center-point of the molecule does not change its position; hence the name point group. One can determine the elements of the point group for a particular molecule by considering the geometrical symmetry of its molecular model. However, when one uses a point group, the elements are not to be interpreted in the same way. Instead the elements rotate and/or reflect the vibronic (vibration-electronic) coordinates and these elements commute with the vibronic Hamiltonian. The point group is used to classify by symmetry the vibronic eigenstates. The symmetry classification of the rotational levels, the eigenstates of the full (rovibronic nuclear spin) Hamiltonian, requires the use of the appropriate permutation-inversion group as introduced by Longuet-Higgins. [1] See the Section Inversion symmetry and nuclear permutation symmetry below. The elements of permutation-inversion groups commute with the full molecular Hamiltonian. In addition to point groups, there exists another kind of group important in crystallography, where translation in 3-D also needs to be taken care of. They are known as space groups.
The five basic symmetry operations mentioned above are: [2]
All other symmetry present in a specific molecule are a combination of these 5 operations.
The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is one of two conventions commonly used to describe point groups. This notation is used in spectroscopy and is used here to specify a molecular point group.
There are two point groups for diatomic molecules: for heteronuclear diatomics, and for homonuclear diatomics.
The group , contains rotations through any angle about the axis of symmetry and an infinite number of reflections through the planes containing the inter-nuclear axis (or the vertical axis, that is reason of the subscript 'v').In the group all planes of symmetry are equivalent, so that all reflections form a single class with a continuous series of elements; the axis of symmetry is bilateral, so that there is a continuous series of classes, each containing two elements . Note that this group is non-abelian and there exists an infinite number of irreducible representations in the group. The character table of the group is as follows:
E | 2c∞ | ... | linear functions, rotations | quadratic | ||
---|---|---|---|---|---|---|
A1=Σ+ | 1 | 1 | ... | 1 | z | x2+y2, z2 |
A2=Σ− | 1 | 1 | ... | -1 | Rz | |
E1=Π | 2 | ... | 0 | (x, y) (Rx, Ry) | (xz, yz) | |
E2=Δ | 2 | ... | 0 | (x2-y2, xy) | ||
E3=Φ | 2 | .... | 0 | |||
... | ... | ... | ... |
In addition to axial reflection symmetry, homonuclear diatomic molecules are symmetric with respect to inversion or reflection through any axis in the plane passing through the point of symmetry and perpendicular to the inter-nuclear axis.
The classes of the group can be obtained from those of the group using the relation between the two groups: . Like , is non-abelian and there are an infinite number of irreducible representations in the group. The character table of this group is as follows:
E | 2c∞ | ... | i | 2S∞ | ... | linear functions, rotations | quadratic | |||
---|---|---|---|---|---|---|---|---|---|---|
A1g=Σ+g | 1 | 1 | ... | 1 | 1 | 1 | ... | z | x2+y2, z2 | |
A2g=Σ−g | 1 | 1 | ... | -1 | 1 | 1 | ... | Rz | ||
E1g=Πg | 2 | ... | 0 | 2 | ... | (x, y) (Rx, Ry) | (xz, yz) | |||
E2g=Δg | 2 | ... | 0 | 2 | ... | (x2-y2, xy) | ||||
E3g=Φg | 2 | .... | 0 | 2 | ... | |||||
... | ... | ... | ... | ... | ... | ... | ... | |||
A1u=Σ+u | 1 | 1 | ... | 1 | -1 | -1 | ... | z | ||
A2u=Σ−u | 1 | 1 | ... | -1 | -1 | -1 | ... | |||
E1u=Πu | 2 | ... | 0 | -2 | ... | (x, y) | ||||
E2u=Δu | 2 | ... | 0 | -2 | ... | |||||
E3u=Φu | 2 | ... | 0 | -2 | ... | |||||
... | ... | ... | ... | ... | ... | ... | ... |
Point group | Symmetry operations or group operations | Symmetry elements or group elements | Simple description of typical geometry | Group order | Number of classes and irreducible representations (irreps) | Example |
---|---|---|---|---|---|---|
E, ,σv | E, , | linear | Hydrogen fluoride | |||
E, , σh ,i, | S∞ ,E , ,, | linear with inversion center | oxygen |
Unlike a single atom, the Hamiltonian of a diatomic molecule doesn't commute with . So the quantum number is no longer a good quantum number. The internuclear axis chooses a specific direction in space and the potential is no longer spherically symmetric. Instead, and commutes with the Hamiltonian (taking the arbitrary internuclear axis as the Z axis). But do not commute with due to the fact that the electronic Hamiltonian of a diatomic molecule is invariant under rotations about the internuclear line (the Z axis), but not under rotations about the X or Y axes. Again, and act on a different Hilbert space, so they commute with in this case also. The electronic Hamiltonian for a diatomic molecule is also invariant under reflections in all planes containing the internuclear line. The (X-Z) plane is such a plane, and reflection of the coordinates of the electrons in this plane corresponds to the operation . If is the operator that performs this reflection, then . So the Complete Set of Commuting Operators (CSCO) for a general heteronuclear diatomic molecule is ; where is an operator that inverts only one of the two spatial co-ordinates (x or y).
In the special case of a homonuclear diatomic molecule, there is an extra symmetry since in addition to the axis of symmetry provided by the internuclear axis, there is a centre of symmetry at the midpoint of the distance between the two nuclei (the symmetry discussed in this paragraph only depends on the two nuclear charges being the same. The two nuclei can therefore have different mass, that is they can be two isotopes of the same species such as the proton and the deuteron, or and , and so on). Choosing this point as the origin of the coordinates, the Hamiltonian is invariant under an inversion of the coordinates of all electrons with respect to that origin, namely in the operation . Thus the parity operator . Thus the CSCO for a homonuclear diatomic molecule is .
Molecular term symbol is a shorthand expression of the group representation and angular momenta that characterize the state of a molecule. It is the equivalent of the term symbol for the atomic case. We already know the CSCO of the most general diatomic molecule. So, the good quantum numbers can sufficiently describe the state of the diatomic molecule. Here, the symmetry is explicitly stated in the nomenclature.
Here, the system is not spherically symmetric. So, , and the state cannot be depicted in terms of as an eigenstate of the Hamiltonian is not an eigenstate of anymore (in contrast to the atomic term symbol, where the states were written as ). But, as , the eigenvalues corresponding to can still be used. If,
where is the absolute value (in a.u.) of the projection of the total electronic angular momentum on the internuclear axis; can be used as a term symbol. By analogy with the spectroscopic notation S, P, D, F, ... used for atoms, it is customary to associate code letters with the values of according to the correspondence:
For the individual electrons, the notation and the correspondence used are:
and
Again, , and in addition: [as ]. It follows immediately that if the action of the operator on an eigenstate corresponding to the eigenvalue of converts this state into another one corresponding to the eigenvalue , and that both eigenstates have the same energy. The electronic terms such that (that is, the terms ) are thus doubly degenerate, each value of the energy corresponding to two states which differ by the direction of the projection of the orbital angular momentum along the molecular axis. This twofold degeneracy is actually only approximate and it is possible to show that the interaction between the electronic and rotational motions leads to a splitting of the terms with into two nearby levels, which is called -doubling. [3]
corresponds to the states. These states are non-degenerate, so that the states of a term can only be multiplied by a constant in a reflection through a plane containing the molecular axis. When , simultaneous eigenfunctions of , and can be constructed. Since , the eigenfunctions of have eigenvalues . So to completely specify states of diatomic molecules, states, which is left unchanged upon reflection in a plane containing the nuclei, needs to be distinguished from states, for which it changes sign in performing that operation.
Homonuclear diatomic molecules have a center of symmetry at their midpoint. Choosing this point (which is the nuclear center of mass) as the origin of the coordinates, the electronic Hamiltonian is invariant under the point group operation i of inversion of the coordinates of all electrons at that origin. This operation is not the parity operation P (or E*); the parity operation involves the inversion of nuclear and electronic spatial coordinates at the molecular center of mass. Electronic states either remain unchanged by the operation i, or they are changed in sign by i. The former are denoted by the subscript g and are called gerade, while the latter are denoted by the subscript u and are called ungerade. The subscripts g or u are therefore added to the term symbol, so that for homonuclear diatomic molecules electronic states can have the symmetries ,......according to the irreducible representations of the point group.
The complete Hamiltonian of a diatomic molecule (as for all molecules) commutes with the parity operation P or E* and rovibronic (rotation-vibration-electronic) energy levels (often called rotational levels) can be given the parity symmetry label + or -. The complete Hamiltonian of a homonuclear diatomic molecule also commutes with the operation of permuting (or exchanging) the coordinates of the two (identical) nuclei and rotational levels gain the additional label s or a depending on whether the total wavefunction is unchanged (symmetric) or changed in sign (antisymmetric) by the permutation operation. Thus, the rotational levels of heteronuclear diatomic molecules are labelled + or -, whereas those of homonuclear diatomic molecules are labelled +s, +a, -s or -a. The rovibronic nuclear spin states are classified using the appropriate permutation-inversion group.
The complete Hamiltonian of a homonuclear diatomic molecule (as for all centro-symmetric molecules) does not commute with the point group inversion operation i because of the effect of the nuclear hyperfine Hamiltonian. The nuclear hyperfine Hamiltonian can mix the rotational levels of g and u vibronic states (called ortho-para mixing) and give rise to ortho-para transitions [4] [5]
If S denotes the resultant of the individual electron spins, are the eigenvalues of S and as in the case of atoms, each electronic term of the molecule is also characterised by the value of S. If spin-orbit coupling is neglected, there is a degeneracy of order associated with each for a given . Just as for atoms, the quantity is called the multiplicity of the term and.is written as a (left) superscript, so that the term symbol is written as . For example, the symbol denotes a term such that and . It is worth noting that the ground state (often labelled by the symbol ) of most diatomic molecules is such that and exhibits maximum symmetry. Thus, in most cases it is a state (written as , excited states are written with in front) for a heteronuclear molecule and a state (written as ) for a homonuclear molecule.
Spin–orbit coupling lifts the degeneracy of the electronic states. This is because the z-component of spin interacts with the z-component of the orbital angular momentum, generating a total electronic angular momentum along the molecule axis Jz. This is characterized by the quantum number , where . Again, positive and negative values of are degenerate, so the pairs (ML, MS) and (−ML, −MS) are degenerate. These pairs are grouped together with the quantum number , which is defined as the sum of the pair of values (ML, MS) for which ML is positive:
So, the overall molecular term symbol for the most general diatomic molecule is given by:
where
The electronic terms or potential curves of a diatomic molecule depend only on the internuclear distance , and it is important to investigate the behaviour of these potential curves as R varies. It is of considerable interest to examine the intersection of the curves representing the different terms.
Let and two different electronic potential curves. If they intersect at some point, then the functions and will have neighbouring values near this point. To decide whether such an intersection can occur, it is convenient to put the problem as follows. Suppose at some internuclear distance the values and are close, but distinct (as shown in the figure). Then it is to be examined whether or and can be made to intersect by the modification . The energies and are eigenvalues of the Hamiltonian . The corresponding orthonormal electronic eigenstates will be denoted by and and are assumed to be real. The Hamiltonian now becomes , where is the small perturbation operator (though it is a degenerate case, so ordinary method of perturbation won't work). setting , it can be deduced that in order for and to be equal at the point the following two conditions are required to be fulfilled:
and |
---|
As an initial zero-order approximation, instead of and themselves, linear combinations of them of the form , can be taken as the eigenstate of the Hamiltonian (where and are, in general, complex). Substituting this expression in the perturbed Schrödinger equation: Expanding: Taking inner product with the respective bra's: ; and Now, and are eigenstates of the Hamiltonian corresponding to different eigenvalues and as is itself Hermitian, they are orthonormal: Thus: ; and Since the operator is Hermitian, the matrix elements and are real, while . The compatibility condition for these equations is (such that both and are not simultaneously zero): This gives: This formula gives the required eigenvalues of the energy in the first approximation. If the energy values of the two terms become equal at the point (i.e. the terms intersect), this means that the two values of given by formula, are the same. For this to happen, the expression under the radical must vanish. Since it is the sum of two squares, both are simultaneously zero. So, it gives the conditions: and |
However, we have at our disposal only one arbitrary parameter giving the perturbation . Hence the
two conditions involving more than one parameter cannot in general be simultaneously satisfied (the initial assumption that and real, implies that is also real). So, two case can arise:
Thus, in a diatomic molecule, only terms of different symmetry can intersect, while the intersection of terms of like symmetry is forbidden. This is, in general, true for any case in quantum mechanics where the Hamiltonian contains some parameter and its eigenvalues are consequently functions of that parameter. This general rule is known as von Neumann - Wigner non-crossing rule. [notes 1]
This general symmetry principle has important consequences is molecular spectra. In fact, in the applications of valence bond method in case of diatomic molecules, three main correspondence between the atomic and the molecular orbitals are taken care of:
Thus, von Neumann-Wigner non-crossing rule also acts as a starting point for valence bond theory.
Symmetry in diatomic molecules manifests itself directly by influencing the molecular spectra of the molecule. The effect of symmetry on different types of spectra in diatomic molecules are:
In the electric dipole approximation the transition amplitude for emission or absorption of radiation can be shown to be proportional to the vibronic matrix element of the component of the electric dipole operator along the molecular axis. This is the permanent electric dipole moment. In homonuclear diatomic molecules, the permanent electric dipole moment vanishes and there is no pure rotation spectrum (but see N.B. below). Heteronuclear diatomic molecules possess a permanent electric dipole moment and exhibit spectra corresponding to rotational transitions, without change in the vibronic state. For , the selection rules for a rotational transition are: . For , the selection rules become: .This is due to the fact that although the photon absorbed or emitted carries one unit of angular momentum, the nuclear rotation can change, with no change in , if the electronic angular momentum makes an equal and opposite change. Symmetry considerations require that the electric dipole moment of a diatomic molecule is directed along the internuclear line, and this leads to the additional selection rule .The pure rotational spectrum of a diatomic molecule consists of lines in the far infra-red or the microwave region, the frequencies of these lines given by:
; where , and
The transition matrix elements for pure vibrational transition are , where is the dipole moment of the diatomic molecule in the electronic state . Because the dipole moment depends on the bond length , its variation with displacement of the nuclei from equilibrium can be expressed as: ; where is the dipole moment when the displacement is zero. The transition matrix elements are, therefore: using orthogonality of the states. So, the transition matrix is non-zero only if the molecular dipole moment varies with displacement, for otherwise the derivatives of would be zero. The gross selection rule for the vibrational transitions of diatomic molecules is then: To show a vibrational spectrum, a diatomic molecule must have a dipole moment that varies with extension. So, homonuclear diatomic molecules do not undergo electric-dipole vibrational transitions. So, a homonuclear diatomic molecule doesn't show purely vibrational spectra.
For small displacements, the electric dipole moment of a molecule can be expected to vary linearly with the extension of the bond. This would be the case for a heteronuclear molecule in which the partial charges on the two atoms were independent of the internuclear distance. In such cases (known as harmonic approximation), the quadratic and higher terms in the expansion can be ignored and . Now, the matrix elements can be expressed in position basis in terms of the harmonic oscillator wavefunctions: Hermite polynomials. Using the property of Hermite polynomials: , it is evident that which is proportional to , produces two terms, one proportional to and the other to . So, the only non-zero contributions to comes from . So, the selection rule for heteronuclear diatomic molecules is:
Homonuclear diatomic molecules show neither pure vibrational nor pure rotational spectra. However, as the absorption of a photon requires the molecule to take up one unit of angular momentum, vibrational transitions are accompanied by a change in rotational state, which is subject to the same selection rules as for the pure rotational spectrum. For a molecule in a state, the transitions between two vibration-rotation (or rovibrational) levels and , with vibrational quantum numbers and , fall into two sets according to whether or . The set corresponding to is called the R branch. The corresponding frequencies are given by:
The set corresponding to is called the P branch. The corresponding frequencies are given by:
Both branches make up what is called a rotational-vibrational band or a rovibrational band. These bands are in the infra-red part of the spectrum.
If the molecule is not in a state, so that , transitions with are allowed. This gives rise to a further branch of the vibrational-rotational spectrum, called the Q branch. The frequencies corresponding to the lines in this branch are given by a quadratic function of if and are unequal, and reduce to the single frequency: if .
For a heteronuclear diatomic molecule, this selection rule has two consequences:
Homonuclear diatomic molecules also show this kind of spectra. The selection rules, however, are a bit different.
An explicit implication of symmetry on the molecular structure can be shown in case of the simplest bi-nuclear system: a hydrogen molecule ion or a di-hydrogen cation, . A natural trial wave function for the is determined by first considering the lowest-energy state of the system when the two protons are widely separated. Then there are clearly two possible states: the electron is attached either to one of the protons, forming a hydrogen atom in the ground state, or the electron is attached to the other proton, again in the ground state of a hydrogen atom (as depicted in the picture).
The trial states in the position basis (or the 'wave functions') are then:
and
The analysis of using variational method starts assuming these forms. Again, this is only one possible combination of states. There can be other combination of states also, for example, the electron is in an excited state of the hydrogen atom. The corresponding Hamiltonian of the system is:
Clearly, using the states and as basis will introduce off-diagonal elements in the Hamiltonian. Here, because of the relative simplicity of the ion, the matrix elements can actually be calculated. The electronic Hamiltonian of commutes with the point group inversion symmetry operation i. Using its symmetry properties, we can relate the diagonal and off-diagonal elements of the Hamiltonian as:
The diagonal terms: Where, is the ground-state energy of the hydrogen atom. Again, where the last step follows from the fact that and from the symmetry of the system, the value of the integrals are same. Now the off-diagonal terms: by inserting a complete set of states in the last term. is called the 'overlap integral' And, (as the wave functions are real) So, |
Because as well as , the linear combination of and that diagonalizes the Hamiltonian is (after normalization). Now as i for , the states are also eigenstates of i. It turns out that and are the eigenstates of i with eigenvalues +1 and -1 (in other words, the wave functions and are gerade (symmetric) and ungerade (unsymmetric), respectively). The corresponding expectation value of the energies are .
From the graph, we see that only has a minimum corresponding to a separation of 1.3 Å and a total energy , which is less than the initial energy of the system, . Thus, only the gerade state stabilizes the ion with a binding energy of . As a result, the ground state of is and this state is called a bonding molecular orbital. [7]
Thus, symmetry plays an explicit role in the formation of .
Diatomic molecules are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen or oxygen, then it is said to be homonuclear. Otherwise, if a diatomic molecule consists of two different atoms, such as carbon monoxide or nitric oxide, the molecule is said to be heteronuclear. The bond in a homonuclear diatomic molecule is non-polar.
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
This article concerns the rotation operator, as it appears in quantum mechanics.
In quantum mechanics, a rotational transition is an abrupt change in angular momentum. Like all other properties of a quantum particle, angular momentum is quantized, meaning it can only equal certain discrete values, which correspond to different rotational energy states. When a particle loses angular momentum, it is said to have transitioned to a lower rotational energy state. Likewise, when a particle gains angular momentum, a positive rotational transition is said to have occurred.
In physics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In molecular physics, the molecular term symbol is a shorthand expression of the group representation and angular momenta that characterize the state of a molecule, i.e. its electronic quantum state which is an eigenstate of the electronic molecular Hamiltonian. It is the equivalent of the term symbol for the atomic case. However, the following presentation is restricted to the case of homonuclear diatomic molecules, or other symmetric molecules with an inversion centre. For heteronuclear diatomic molecules, the u/g symbol does not correspond to any exact symmetry of the electronic molecular Hamiltonian. In the case of less symmetric molecules the molecular term symbol contains the symbol of the group representation to which the molecular electronic state belongs.
In quantum mechanics, the Hellmann–Feynman theorem relates the derivative of the total energy with respect to a parameter to the expectation value of the derivative of the Hamiltonian with respect to that same parameter. According to the theorem, once the spatial distribution of the electrons has been determined by solving the Schrödinger equation, all the forces in the system can be calculated using classical electrostatics.
In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy of the level. It is represented mathematically by the Hamiltonian for the system having more than one linearly independent eigenstate with the same energy eigenvalue. When this is the case, energy alone is not enough to characterize what state the system is in, and other quantum numbers are needed to characterize the exact state when distinction is desired. In classical mechanics, this can be understood in terms of different possible trajectories corresponding to the same energy.
In mathematics, D3 (sometimes alternatively denoted by D6) is the dihedral group of degree 3 and order 6. It equals the symmetric group S3. It is also the smallest non-abelian group.
In condensed matter physics, a spin wave is a propagating disturbance in the ordering of a magnetic material. These low-lying collective excitations occur in magnetic lattices with continuous symmetry. From the equivalent quasiparticle point of view, spin waves are known as magnons, which are bosonic modes of the spin lattice that correspond roughly to the phonon excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a ferromagnet's spontaneous magnetization. The energies of spin waves are typically only μeV in keeping with typical Curie points at room temperature and below.
The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.
In quantum mechanics the delta potential is a potential well mathematically described by the Dirac delta function - a generalized function. Qualitatively, it corresponds to a potential which is zero everywhere, except at a single point, where it takes an infinite value. This can be used to simulate situations where a particle is free to move in two regions of space with a barrier between the two regions. For example, an electron can move almost freely in a conducting material, but if two conducting surfaces are put close together, the interface between them acts as a barrier for the electron that can be approximated by a delta potential.
In rotational-vibrational and electronic spectroscopy of diatomic molecules, Hund's coupling cases are idealized descriptions of rotational states in which specific terms in the molecular Hamiltonian and involving couplings between angular momenta are assumed to dominate over all other terms. There are five cases, proposed by Friedrich Hund in 1926-27 and traditionally denoted by the letters (a) through (e). Most diatomic molecules are somewhere between the idealized cases (a) and (b).
Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.
In mathematical physics, Clebsch–Gordan coefficients are the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. Mathematically, they specify the decomposition of the tensor product of two irreducible representations into a direct sum of irreducible representations, where the type and the multiplicities of these irreducible representations are known abstractly. The name derives from the German mathematicians Alfred Clebsch (1833–1872) and Paul Gordan (1837–1912), who encountered an equivalent problem in invariant theory.
Hamiltonian truncation is a numerical method used to study quantum field theories (QFTs) in spacetime dimensions. Hamiltonian truncation is an adaptation of the Rayleigh–Ritz method from quantum mechanics. It is closely related to the exact diagonalization method used to treat spin systems in condensed matter physics. The method is typically used to study QFTs on spacetimes of the form , specifically to compute the spectrum of the Hamiltonian along . A key feature of Hamiltonian truncation is that an explicit ultraviolet cutoff is introduced, akin to the lattice spacing a in lattice Monte Carlo methods. Since Hamiltonian truncation is a nonperturbative method, it can be used to study strong-coupling phenomena like spontaneous symmetry breaking.