System information modelling

Last updated

System information modelling (SIM) is the process of modelling complex connected systems. System information models are digital representations of connected systems, such as electrical instrumentation and control, power, and communication systems. The objects modelled in a SIM have a 1:1 relationship with the objects in the physical system. Components, connections and functions are defined and linked as they would be in the real world.

Contents

Origins

The concept of SIM has existed since the mid 1990s. It was first proposed in 1994 by an Australian instrument, electrical and control system engineering company – I&E Systems Pty Ltd. Like many technological innovations the idea for SIM was born out of necessity. Since the mid-nineties, the complexity of power, control and Information and Communication Technology (ICT) systems has been growing exponentially due to rapid advances in technology; this has rendered the traditional paper-based methodologies and applications used for system design to become obsolete.

The cost of design related activities can be up to 70% of the total project expenditure in an electrical instrumentation and control system (EICS) engineering project. Analyses revealed that the limited nature of paper-based methods/workflows had significant contributions to the high design cost which required duplication of information on multiple documents resulting in design errors and omissions and therefore increasing the cost of labour. With this in mind, the company realized there is a need to shift away from the traditional paper-based methods to a more efficient systematic digital modelling approach.

The term 'System Information Modelling' was first published in a technical report in 2012 by Peter E.D. Love and Jingyang Zhou. [1] The report presented empirical evidence to demonstrate that the use of a SIM could potentially improve productivity and reduce the cost to produce EICS documentation. The research examined a set of electrical engineering drawings of an Iron Ore Stacker Conveyor system; errors and omissions identified from the drawings have been classified and quantified. The report concluded that the use of traditional Computer-Aided-Design (CAD) methods to produce electrical engineering drawings is ineffective, inefficient and costly.

Since 2013, a number of scholarly research papers have been published that have demonstrated the effectiveness and efficiency of using a SIM instead of CAD to design and document EICS in a variety of projects (e.g., iron ore processing plant, FPSO safety control system, copper smelter plant, oil refinery, and a geothermal power plant). [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Definition

System Information Modelling can be defined as the process of digitally modelling a complex connected system. A System Information Model is a shared information resource of a system forming a reliable basis of knowledge during its life-cycle.

Throughout the life-cycle

A SIM containing all the project information can be applied throughout the entire life-cycle of the project. [2]

Design

Engineering design and documentation can be undertaken simultaneously when using a SIM. A SIM can be created as the design of an EICS progresses. Draftsman and modellers are no longer required. When a SIM is applied to the design of a connected system, all physical equipment and the associated connections to be constructed can be modelled in a relational database. Components are classified according to 'Type' and 'Location' attributes. The 'Type' attribute is used to define equipment functionalities. The 'Location' attribute is used to describe the physical position of equipment. Connections between equipment are modelled as 'connectors'. To facilitate the design, attributes, such as a device module, specifications and vendor manuals can be assigned and attached to each individual object.

When the design process is complete, a read only copy of the model is created, exported and made available to other project team members. The users can access all or part of the design information within the SIM regarding to their respective authorization levels. Private user data can be established and attached to the model.

Procurement and construction

When the design is approved for construction, a SIM, which is a digital realization of the design, can be issued to different parties such as the procurement team and construction contractors. Information management can be achieved digitally and the role of paper drawings is eliminated. [8] The procurement plan and construction schedule can be created for each individual object in the SIM. Construction activities can be assigned to objects or work-packs with weighting factors defined. This enables the managers to be able to track the progresses of the procurement and construction detailed to individual object level and make informed decisions.

Asset management

A SIM is specifically useful for asset managers, as it enables information to be stored in a single digital model. [2] In a traditional CAD-based environment paper drawings are typically handed over to the asset owner in the form of 'As Built' drawings, which reflect, in theory, the actual construction of every system, component and connection of a project. If an asset manager wants to maintain, repair or upgrade any portion of the asset, then the 'As Built' drawings need to be used. However, recovering information contained on an array of drawings is a tedious and time consuming task. Any error or omission contained within the drawings will potentially hinder the interpretation of the design.

When engineering is undertaken using a SIM it can be stored in a digital format whereby a 1:1 mapping is undertaken. Operations such as test, calibration, inspection, repair, minor change and isolation can be defined and scheduled within the SIM. The SIM data can also be conveniently exported and input into other third party asset management applications to comply with the owners' asset management strategy. In addition, the SIM can act as a training tool, which can be used regularly to assist operators to become familiar with the design.

Software

A commercial proprietary software package, Digital Asset Delivery (DAD), has been developed based on the concept of SIM by I&E Systems Pty Ltd.

The initial version of DAD was released in 1997 which was primarily a modelling tool used to design and document the electrical engineering system. Since born DAD has been tested and applied to many projects including but not limited to greenfield and brownfield, power, control and ICT systems. The DAD software has been continuously maintained and upgraded to cater for complex and rapid changing EICS projects. The latest release of DAD is version 12 which incorporates of a number of 'Portals' that can be applied to the entire life-cycle of a project including SIM Design Portal, Review Portal, Procurement Portal, Construction Portal, Commissioning Portal and Maintenance Portal. It also provides a facility to create Process Layers, Power Layers, Functional Layers and Comms layers to help to further understand the way a system operates.

International development

The concept of SIM has been applied and verified in a number of international projects.

Australia

There are a number of Australian-based organisations in various industry sectors benefitting from SIM technology. A few examples:

Fortescue Metals Group (FMG) based in Western Australia has adopted SIM for all their projects built since 2010. These projects include the large scale Solomon Iron Ore project, the expansion of their export port facility and the North Star magnetite project. FMG acknowledges that using SIM on these projects resulted in large savings and more efficient project execution and that it continues to provide benefits for the operation of these facilities.

Opticomm builds, owns and operates a large fibre optic communications network which connects tens of thousands of residential and commercial properties. Their network is totally modelled using SIM and all their construction and operations activities are based on the information in their SIM based information model.

In 2016, Perth International Airport adopted the SIM and they had their power distribution network modelled using this technology. The electrical components and cable objects in their SIM are linked to the objects in their geographic information system (GIS). This seamlessly provides full system technical and geographical information about all their electrical system components and cables. Perth Airport has plans to expand the use of SIM to their other connected systems like runway lighting systems, and communication networks.

China

SIM has been applied to model and manage the electrical and communication systems of the Wuhan Metro Stations in China in 2014. In 2016, a SIM model was created to digitize the distributed control system (DCS) of the Wuhan International Expo Centre. Since 2014, a number of research projects have been undertaken by the BIM Centre of Huazhong University of Science and Technology including SIM application, linking SIM to BIM and linking SIM to Engineering Information Modelling (EIM).

Saudi Arabia

In 2015, SIM was applied by a large Japanese Engineering and Construction company to model the electrical and instrumentation systems on a very large new oil refinery project in Saudi Arabia. The SIM was used as the basis for management of all procurement and construction activities through Procurement and Construction Portals.

Europe

In 2018, SIM was applied by a large logistics company in Ireland to model their entire ICT Infrastructure in advance of a significant hardware and software refresh. SIM was used to map the high level business processes of the organisation down to the specific and individual records held in each system by the organisation, assuring migration success to a new ERP as well as providing compliance and assurance on GDPR requirements. The SIM was used as the Configuration Management Database (CMDB) to facilitate the ongoing project activities required to upgrade the organisations technologies and will become an inherent part of their IT operations.

SIM and BIM

System information modelling is different from building information modeling, though both focus on sharing knowledge and information. The process of BIM has been defined as:

Building information modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle; defined as existing from earliest conception to demolition.

A SIM is akin to BIM; 'Building' is replaced with 'System' to represent the process of modeling complex connected systems, such as electrical control, power and communications, which do not possess geometry. Essentially, a SIM takes a discipline specific perspective to model complex connected systems, but can be integrated with a building information model when a single point of truth is formed.

The traditional way of documenting the design of the connected system is to use 2D drawings that are created by draftsmen and consist of various views that must be used jointly to form an integrated design. As the drawings are created manually and the information for a component could be represented on several different drawings, the propensity for errors, omission, conflicts and duplications to materialize significantly increases. [3] [4] Since the mid 1970s, there has been a trend to replace the traditional manually drafted drawings with computer aided digital drawings. Though efficiencies in creating drawings has been improved since the introduction of CAD, there remains an over reliance on the production of paper based documentation despite the emergence of 'digital' engineering. With the introduction of SIM, productivity benefits can be achieved, particularly during the operations and maintenance of assets for EICS.

SIM is not restricted to the EICS, power and communication systems. It can be used to model a variety of connected systems such as network topology, causal loop and interactions between people and organizations. The application scope of SIM is beyond the 'physical facility' that has been defined for BIM, which enables the SIM to be applicable to model both the physical and virtual networks of the connected systems.

Extended applications

A SIM can be linked to Geographical Information Systems to support the management of spatial information. For example, a SIM model with components assigned by coordinates can be linked to Google Earth to show the real physical locations of the components. A SIM can also be linked to third party 3D models, using applications such as Autodesk Navisworks, to gain spatial support and also provide detailed system data to the third parties. Interoperability can be achieved between SIM and a variety of technologies such as image modelling, Google Maps, virtual reality, augmented reality, Quick Response code, and radio-frequency identification.

See also

Related Research Articles

Wire-frame model Visual presentation of a 3-dimensional or physical object used in 3D computer graphics

A wire-frame model, also wireframe model, is a visual representation of a three-dimensional (3D) physical object used in 3D computer graphics. It is created by specifying each edge of the physical object where two mathematically continuous smooth surfaces meet, or by connecting an object's constituent vertices using (straight) lines or curves. The object is projected into screen space and rendered by drawing lines at the location of each edge. The term "wire frame" comes from designers using metal wire to represent the three-dimensional shape of solid objects. 3D wire frame computer models allow for the construction and manipulation of solids and solid surfaces. 3D solid modeling efficiently draws higher quality representations of solids than conventional line drawing.

Computer-aided design Constructing a product by means of computer

Computer-aided design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The term CADD is also used.

Technical drawing creation of standards and the technical drawings

Technical drawing, drafting or drawing, is the act and discipline of composing drawings that visually communicate how something functions or is constructed.

Building information modeling (BIM) is a process supported by various tools, technologies and contracts involving the generation and management of digital representations of physical and functional characteristics of places. Building information models (BIMs) are files which can be extracted, exchanged or networked to support decision-making regarding a built asset. Current BIM software is used by individuals, businesses and government agencies who plan, design, construct, operate and maintain diverse physical infrastructures, such as water, refuse, electricity, gas, communication utilities, roads, railways, bridges, ports and tunnels.

ArchiCAD Computer-aided design software for architecture

ARCHICAD is an architectural BIM CAD software for Macintosh and Windows developed by the Hungarian company Graphisoft. ARCHICAD offers computer aided solutions for handling all common aspects of aesthetics and engineering during the whole design process of the built environment — buildings, interiors, urban areas, etc.

Open Design Alliance is a nonprofit organization creating SDKs for engineering applications. ODA offers interoperability tools for .dwg, .dxf, .dgn, Autodesk® Revit®, Autodesk Navisworks®, and .ifc files and a technology stack for visualization, web development, 3D PDF publishing, modeling, and more.

Shop drawing

A shop drawing is a drawing or set of drawings produced by the contractor, supplier, manufacturer, subcontractor, or fabricator. Shop drawings are typically required for prefabricated components. Examples of these include: elevators, structural steel, trusses, pre-cast concrete, windows, appliances, cabinets, air handling units, and millwork. Also critical are the installation and coordination shop drawings of the MEP trades such as sheet metal ductwork, piping, plumbing, fire protection, and electrical. Shop drawings are produced by contractors and suppliers under their contract with the owner. The shop drawing is the manufacturer’s or the contractor’s drawn version of information shown in the construction documents. The shop drawing normally shows more detail than the construction documents. It is drawn to explain the fabrication and/or installation of the items to the manufacturer’s production crew or contractor's installation crews. The style of the shop drawing is usually very different from that of the architect’s drawing. The shop drawing’s primary emphasis is on the particular product or installation and excludes notation concerning other products and installations, unless integration with the subject product is necessary.

RUCAPS was a computer aided design (CAD) system for architects, first developed during the 1970s and 1980s, and today credited as a forerunner of Building Information Modelling (BIM). It ran on minicomputers from Prime Computer and Digital Equipment Corporation (DEC).

Tekla Finnish software company

Tekla is a software product family that consists of programs for analysis and design, detailing and project communication. Tekla software is produced by Trimble, the publicly listed US-based technology company.

Building services engineering is a professional engineering discipline that strives to achieve a safe and comfortable indoor environment whilst minimizing the environmental impact of a building.

Design technology, or D.T., is the study, design, development, application, implementation, support and management of computer and non-computer based technologies for the express purpose of communicating product design intent and constructability. Design technology can be applied to the problems encountered in construction, operation and maintenance of a product.

Virtual Design and Construction (VDC) is the management of integrated multi-disciplinary performance models of design-construction projects, including the product, work processes and organization of the design - construction - operation team in order to support explicit and public business objectives.

Tekla Structures

Tekla Structures is a building information modeling software able to model structures that incorporate different kinds of building materials, including steel, concrete, timber and glass. Tekla allows structural drafters and engineers to design a building structure and its components using 3D modeling, generate 2D drawings and access building information. Tekla Structures was formerly known as Xsteel.

BricsCAD is a software application for computer-aided design (CAD), developed by Bricsys nv. The company was founded in 2002 by Erik de Keyser, a longtime CAD entrepreneur. In 2011 Bricsys acquired the intellectual property rights from Ledas for constraints-based parametric design tools, permitting the development of applications in the areas of direct modeling and assembly design. Bricsys is headquartered in Ghent, Belgium, has additional development centers in Nizhny Novgorod and Novosibirsk, Russia; Bucharest, Romania and Singapore. Bricsys is a founding member of the Open Design Alliance, and joined the BuildingSMART International consortium in December 2016.

Advance Concrete is a computer-aided design (CAD) software application was developed by GRAITEC, but is now an Autodesk product, used for modeling and detailing reinforced concrete structures. Advance Concrete is used in the structural / civil engineering and drafting fields.

FreeCAD Free and open-source CAD software

FreeCAD is a free and open-source general-purpose parametric 3D CAD modeler and a building information modeling (BIM) software with finite-element-method (FEM) support. FreeCAD is intended for mechanical engineering product design but also expands to a wider range of uses around engineering, such as architecture or electrical engineering. Users can not only interact with this software; because of the free and open-source nature of the software, users can also extend the functionality of the software using the Python programming language. FreeCAD is currently in a beta stage of development.

4D BIM, an acronym for 4-dimensional building information modeling and a term widely used in the CAD industry, refers to the intelligent linking of individual 3D CAD components or assemblies with time- or scheduling-related information. The use of the term 4D is intended to refer to the fourth dimension: time, i.e. 4D is 3D plus time schedule.

FINE MEP is a BIM CAD software tool for Building services engineering design, built on top of IntelliCAD. It provides full IFC support, according to the 2x3 IFC Standard. FINE BIM structure, enables a smart model shaping and high design accuracy, directly applied to the real 3D building model and its building services. Not only the building elements, but also the components of the mechanical/electrical installations themselves are all intelligent objects carrying their own attributes and interacting among each other. MEP design is supported by specific CAD commands and further facilitated through sophisticated recognition and validation algorithms, providing a user-friendly modeling environment.

Building informationmodeling (BIM) in green buildings enables sustainable designs, allowing architects and engineers to integrate and analyse building performance. BIM enhances design and construction efficiency. Designers can quantify the environmental impacts of systems and materials to support the decisions needed to produce sustainable buildings, using information about sustainable materials that are stored in the database and interoperability between design and analysis tools. Such data is useful for building life cycle assessments.

COMOS is a plant engineering software solution of the Siemens AG. The applications for this software lie in particular in the process industries for the engineering, operation, and maintenance of process plants as well as their asset management.

References

  1. Love, P.E.D., and Zhou, J. (2012). Documentation Errors in Instrumentation and Electrical Systems: Toward Systems Information Modelling. School of Built Environment for I&E Systems, SoBE 100/2012, Curtin University, July, Perth, Australia.
  2. 1 2 3 Peter E.D. Love; Jingyang Zhou; Jane Matthews; Chun-Pong Sing; Brad Carey (2015-06-19). "A systems information model for managing electrical, control, and instrumentation assets". Built Environment Project and Asset Management. 5 (3): 278–289. doi:10.1108/BEPAM-03-2014-0019. ISSN   2044-124X.
  3. 1 2 Love, Peter E. D.; Zhou, Jingyang; Sing, Chun-pong; Kim, Jeong Tai (2013-11-01). "Documentation errors in instrumentation and electrical systems: Toward productivity improvement using System Information Modeling". Automation in Construction. 35: 448–459. doi:10.1016/j.autcon.2013.05.028.
  4. 1 2 Love, Peter E. D.; Zhou, Jingyang; Sing, Chun-pong; Kim, Jeong-Tai (2014-06-03). "Assessing the impact of RFIs in electrical and instrumentation engineering contracts". Journal of Engineering Design. 25 (4–6): 177–193. doi:10.1080/09544828.2014.935305. ISSN   0954-4828.
  5. Love, P.E.D., Matthews, J. and Zhou, J., (2014). Systems Information Model for Asset Management of Electrical, Control, and Instrumentation Systems. BIM Journal11, pp.10-13
  6. J. Zhou; P. E.D. Love; J. Matthews; B. Carey; C.P. Sing; D.J. Edwards (2015-10-29). "Toward productivity improvement in electrical engineering documentation". International Journal of Productivity and Performance Management. 64 (8): 1024–1040. doi:10.1108/IJPPM-10-2014-0151. ISSN   1741-0401.
  7. Zhou, J.; Love, P. E. D.; Matthews, J.; Carey, B.; Sing, C. P. (2015-01-01). "Object-oriented model for life cycle management of electrical instrumentation control projects". Automation in Construction. 49, Part A: 142–151. doi:10.1016/j.autcon.2014.10.008.
  8. 1 2 Love, Peter E. D.; Zhou, Jingyang; Matthews, Jane (2016-07-01). "Systems information modeling: From file exchanges to model sharing for electrical instrumentation and control systems". Automation in Construction. 67: 48–59. doi:10.1016/j.autcon.2016.02.010.
  9. Love, Peter E. D.; Zhou, Jingyang; Matthews, Jane; Sing, Michael C. P. (2016). "Retrospective Future Proofing of a copper mine: Quantification of errors and omissions in 'As-built' documentation". Journal of Loss Prevention in the Process Industries. 43: 414–423. doi:10.1016/j.jlp.2016.06.011.
  10. Love, Peter E. D.; Zhou, Jingyang; Matthews, Jane; Edwards, David (2016-09-01). "Moving beyond CAD to an object-oriented approach for electrical control and instrumentation systems" (PDF). Advances in Engineering Software. 99: 9–17. doi:10.1016/j.advengsoft.2016.04.007.
  11. Love, Peter E. D.; Zhou, Jingyang; Matthews, Jane; Lou, Hanbin (2016-11-01). "Object oriented modeling: Retrospective systems information model for constructability assessment". Automation in Construction. 71, Part 2: 359–371. doi:10.1016/j.autcon.2016.08.032.
  12. Love, Peter E. D.; Zhou, Jingyang; Matthews, Jane; Luo, Harbin (2016-12-01). "Systems information modelling: Enabling digital asset management". Advances in Engineering Software. 102: 155–165. doi:10.1016/j.advengsoft.2016.10.007.
  13. Love, Peter E. D.; Zhou, Jingyang; Matthews, Jane (2017-08-01). "Safeguarding the integrity of Liquefied Natural Gas infrastructure assets with digitization: Case of a domestic gas metering upgrade project". Journal of Natural Gas Science and Engineering. 44: 9–21. doi:10.1016/j.jngse.2017.04.008.
  14. Love, Peter E. D.; Zhou, Jingyang; Edwards, David J.; Irani, Zahir; Sing, Chun-Pong (2017-05-01). "Off the rails: The cost performance of infrastructure rail projects" (PDF). Transportation Research Part A: Policy and Practice. 99: 14–29. doi:10.1016/j.tra.2017.02.008.
  15. Love, P.E.D.; Zhou, J.; Matthews, J.; Sing, M.C.P.; Edwards, D.J. (2017). "System information modelling in practice: Analysis of tender documentation quality in a mining mega-project" (PDF). Automation in Construction. 84: 176–183. doi: 10.1016/j.autcon.2017.08.034 .