Taranaki Basin

Last updated

The Taranaki Basin is an onshore-offshore Cretaceous rift basin on the West Coast of New Zealand. [1] [2] Development of rifting was the result of extensional stresses during the breakup of Gondwanaland. The basin later underwent fore-arc and intra-arc basin development, due to the subduction of the Pacific Plate under the Australian Plate at the Hikurangi Subduction System. [3] [4] The basin covers approximately 100,000 km2 of which the majority is offshore. [2] [5] The basin contains mostly marine sediment, with significant terrestrial sediment from the Late Cretaceous to the Eocene. [6] The majority of New Zealand's oil and gas production occurs within the basin, with over 600 wells and approximately 20 oil and gas fields being drilled. [7]

Contents

Broad Map and General Cross Section of the Taranaki Basin. Prepared by the Dept. of Lands and Survey. Source: Land Information New Zealand (LINZ).
Mount Taranaki is in the middle. Map and Cross Section of Taranaki Basin.jpg
Broad Map and General Cross Section of the Taranaki Basin. Prepared by the Dept. of Lands and Survey. Source: Land Information New Zealand (LINZ).
Mount Taranaki is in the middle.

Overview

The Taranaki Basin lies on the West coast of the North Island of New Zealand in the Taranaki Region, and is approximately 400 km west of the current Pacific-Australian plate boundary. [8] It covers approximately 100,000 km2 and contains up to 9 km in sediment. [5] The basin is divided into two main components, the Western Platform and Eastern Mobile Belt, formerly known as the Taranaki Graben. [8] [9] The Western Platform is a relatively undeformed, stable block compared to the Eastern Mobile Belt. While it underwent block faulting throughout the Late Cretaceous to the Eocene, it has been stable since. This section of the basin contains between 2000 and 5000m of sediment, dating from the Late Cretaceous to present. The Western Platform is separated from the Eastern Mobile Belt on the East by the Cape Egmont fault zone, a northwest trending fault zone consisting of multiple subparallel reverse and normal faults. [9] The Eastern Mobile Belt consists of multiple grabens and contains multiple compressional features, including overthrusts, reverse faults, and inversion structures. The Eastern Mobile Belt extends from this fault zone to the north-south trending Taranaki fault zone, which is adjacent to the a large upthrust basement block that divides the Taranaki Basin from the later-formed, eastward Wanganui Basin. [9]

Nature

The Blue whale, Southern right whale and the critically endangered Maui's dolphin are living beings in the sea in Taranaki Basin, or live near the coast of Taranaki. For the Blue whale it is a breeding ground. [10]

Tectonic Evolution

Basement Structure

Pre-rift rocks in the Taranaki Basin are typically considered basement rocks. [4] The Taranaki basement is extremely heterogeneous, with metasediments and granites representing the original Gondwana Craton, and granitoids, volcanic and volcano-sedimentary rocks, and accretionary complexes representing later accretionary terrains and plutons. [11]

Rifting

Formation of the Taranaki Basin initiated in the Late Cretaceous, due to the separation of Australia and Zealandia during the breakup of Gondwanaland. This breakup caused the formation of the Tasman Sea, along with multiple extensional basins on the New Zealand subcontinent, including an intra-plate rift that formed the Taranaki Rift, which would develop into the Taranaki Basin. [1] [4] [12]

Syn-rift sediments were deposited within rift controlled grabens across the basin, and are separated from the basement rock by a regional unconformity. [4] These sedimentary layers contain faulting that is indicative of extension during deposition. [1] They include sequencing from non-marine conglomerates to sand, silt, and then coals. [5]

Drift

After the end of extension in the Late Cretaceous, the Taranaki Basin became a passive margin setting, with drift resulting in marine transgression. Subsidence of the basin was slow enough to allow for the massive accumulation of sediment during the Paleocene and Eocene. These Paleocene and Eocene sandstones contain the majority of the petroleum reserves found within the basin. [2] During drift, a decline in sediment deposition occurred, with a thinning of layers from the Cretaceous to the Eocene. The sediments in this sequence lead from coastal plain deposits, to shallow marine sands, to shelf sediments. [1]

Stratigraphy

Pakawau Group

The Pakawau group contains the oldest sediment within the Taranaki Basin, deposited between the Late Cretaceous and Paleocene. It includes the Rakopi Formation (85-75 Ma) and the North Cape Formation (75-65 Ma). Rocks within this group include fluvial sandstones and marine, transgressive sandstones. [7] In some areas within the basin, this group is more than 2000 m thick. It overlies the mostly igneous and metasedimentary basement. [13]

Kapuni Group

The Kapuni group contains multiple formations that span the Paleocene and Eocene. These formations are, in ascending order, the Farewell Formation, Kaimiro Formation, Mangahewa Formation, and McKee Formation. [13]

The Farewell Formation (65-55 Ma) contains mostly fluvial sandstone. The Kaimiro Formation (55-45 Ma) contains mostly poor to moderately sorted alluvial and coastal plain sandstones with some inter-bedded micaceous and carbonaceous mudstones and siltstones. This formation is not fossiliferous. The Mangahewa Formation (45-34 Ma) consists mostly of sandstone, siltstone, mudstone and bituminous coal. This formation has good reservoir sandstones. The McKee Formation (38-33 Ma) is easily recognizable by its coarse-grained, well sorted sandstones. Small clasts of mudstones and coal can be found throughout this formation. [7] [13]

Tikorangi Limestone

The Tikorangi Limestone (33-23 Ma) is composed of mostly sandy, deep-water limestone along with calcareous mudstone interbedded with calcareous sandstone. [13] [14] It forms a conformable contact with an 8m thick layer of glauconitic sandstone, The Matapo Sandstone Member, which lies above the formation. [13]

Mahoenui Group

The Mahoenui Group consists of calcareous mudstones, with thinly interbedded sandstones, siltstones, and limestones. Sediment in this group was deposited during the Late Oligocene and the Early Miocene. [15]

Mokau Group

The Mokau Group is composed of shoreface sandstones with some interbedded siltstones. Layers of fluvial conglomerate and coal can be found as well. [16] The sediment in this group represents deposition in the Early Miocene. [13]

Wai-iti Group

The Mohakatino Formation (~17-13 Ma) is composed of silty mudstones, with andesitic, volcaniclastic sandstones. [15] [16] The Mt Messenger Formation (11-9 Ma), also known as the Waikiekie Formation, is a massive sandstone unit. [15] The Urenui Formation (9-5 Ma) is a silty mudstone that contains occasional conglomerates. [13]

Matemateāonga Formation

The Matemateāonga Formation (7-5 Ma) consists of shellbeds, siltstones and sandstones with interbedded conglomerate. This formation represents deposition during the Late Miocene and Early Pliocene. [15] [17]

Recent Deposits

Andesitic volcanism began within the basin in the Miocene, and has continued until the present day.

Hydrocarbons

The majority of New Zealand's petroleum production has been within the Taranaki Basin. Over 1.8 billion barrels of BOE have been discovered, of which 70% is gas. [5] More than 400 wells have been drilled throughout the basin, [4] in about 20 fields. [7] A wide variety of petroleum play types, mostly structural, can be seen throughout the basin due to its complex history. The main trap styles found within the basin are fault-dependent closures, inversion anticlines, and overthrusts. [5]

Source Rocks

The majority of oil produced from the Taranaki basement are sourced from coals and marine shales from the Late Cretaceous and Paleogene. [7]

Current oil and gas fields within the basin [7]

See also

Related Research Articles

<span class="mw-page-title-main">Los Angeles Basin</span> Sedimentary basin located along the coast of southern California

The Los Angeles Basin is a sedimentary basin located in Southern California, in a region known as the Peninsular Ranges. The basin is also connected to an anomalous group of east-west trending chains of mountains collectively known as the Transverse Ranges. The present basin is a coastal lowland area, whose floor is marked by elongate low ridges and groups of hills that is located on the edge of the Pacific Plate. The Los Angeles Basin, along with the Santa Barbara Channel, the Ventura Basin, the San Fernando Valley, and the San Gabriel Basin, lies within the greater Southern California region. The majority of the jurisdictional land area of the city of Los Angeles physically lies within this basin.

<span class="mw-page-title-main">Wilcox Group</span> Geologic group in North America

The Wilcox Group is an important geologic group in the Gulf of Mexico Basin and surrounding onshore areas from Mexico and Texas to Louisiana and Alabama. The group ranges in age from Paleocene to Eocene and is in Texas subdivided into the Calvert Bluff, Simsboro and Hooper Formations, and in Alabama into the Nanafalia and Hatchetigbee Formations. Other subdivisions are the Lower, Middle and Upper Wilcox Subgroups, and the Carrizo and Indio Formations.

<span class="mw-page-title-main">Maracaibo Basin</span> Foreland basin in Venezuela

The Maracaibo Basin, also known as Lake Maracaibo natural region, Lake Maracaibo depression or Lake Maracaibo Lowlands, is a foreland basin and one of the eight natural regions of Venezuela, found in the northwestern corner of Venezuela in South America. Covering over 36,657 square km, it is a hydrocarbon-rich region that has produced over 30 billion bbl of oil with an estimated 44 billion bbl yet to be recovered. The basin is characterized by a large shallow tidal estuary, Lake Maracaibo, located near its center. The Maracaibo basin has a complex tectonic history that dates back to the Jurassic period with multiple evolution stages. Despite its complexity, these major tectonic stages are well preserved within its stratigraphy. This makes The Maracaibo basin one of the most valuable basins for reconstructing South America's early tectonic history.

<span class="mw-page-title-main">Gulf of Suez Rift</span> Continental rift zone that was active between the Late Oligocene and the end of the Miocene

The Gulf of Suez Rift is a continental rift zone that was active between the Late Oligocene and the end of the Miocene. It represented a continuation of the Red Sea Rift until break-up occurred in the middle Miocene, with most of the displacement on the newly developed Red Sea spreading centre being accommodated by the Dead Sea Transform. During its brief post-rift history, the deepest part of the remnant rift topography has been filled by the sea, creating the Gulf of Suez.

<span class="mw-page-title-main">Geology of Tasmania</span> Overview of the geology of Tasmania

The geology of Tasmania is complex, with the world's biggest exposure of diabase, or dolerite. The rock record contains representatives of each period of the Neoproterozoic, Paleozoic, Mesozoic and Cenozoic eras. It is one of the few southern hemisphere areas that were glaciated during the Pleistocene with glacial landforms in the higher parts. The west coast region hosts significant mineralisation and numerous active and historic mines.

The Waikato and King Country regions of New Zealand are built upon a basement of greywacke rocks, which form many of the hills. Much of the land to the west of the Waikato River and in the King Country to the south has been covered by limestone and sandstone, forming bluffs and a karst landscape. The volcanic cones of Karioi and Pirongia dominate the landscape near Raglan and Kawhia Harbours. To the east, the land has been covered with ignimbrite deposits from the Taupō Volcanic Zone. Large amounts of pumice from the Taupō Volcanic Zone have been deposited in the Waikato Basin and Hauraki Plains.

The Pearl River Mouth basin (PRMB) is an extensional sedimentary basin located in the northern part of the South China Sea. The basin covers an area of about 175,000 km2 where the Pearl River meets the South China Sea near Hong Kong.

<span class="mw-page-title-main">Himalayan foreland basin</span> Active collisional foreland basin in South Asia

The Himalayan foreland basin is an active collisional foreland basin system in South Asia. Uplift and loading of the Eurasian Plate on to the Indian Plate resulted in the flexure (bending) of the Indian Plate, and the creation of a depression adjacent to the Himalayan mountain belt. This depression was filled with sediment eroded from the Himalaya, that lithified and produced a sedimentary basin ~3 to >7 km deep. The foreland basin spans approximately 2,000 kilometres (1,200 mi) in length and 450 kilometres (280 mi) in width. From west to east the foreland basin stretches across five countries: Pakistan, India, Nepal, Bangladesh, and Bhutan.

<span class="mw-page-title-main">Offshore Indus Basin</span> Basin in offshore Pakistan

The offshore Indus Basin is one of the two basins in offshore Pakistan, the other one being the offshore Makran Basin. The Murray Ridge separates the two basins. The offshore Indus basin is approximately 120 to 140 kilometers wide and has an areal extent of ~20,000 square km.

<span class="mw-page-title-main">Middle Magdalena Valley</span>

The Middle Magdalena Valley, Middle Magdalena Basin or Middle Magdalena Valley Basin is an intermontane basin, located in north-central Colombia between the Central and Eastern Ranges of the Andes. The basin, covering an area of 34,000 square kilometres (13,000 sq mi), is situated in the departments of Santander, Boyacá, Cundinamarca and Tolima.

<span class="mw-page-title-main">North German basin</span> Passive-active rift basin in central and west Europe

The North German Basin is a passive-active rift basin located in central and west Europe, lying within the southeasternmost portions of the North Sea and the southwestern Baltic Sea and across terrestrial portions of northern Germany, Netherlands, and Poland. The North German Basin is a sub-basin of the Southern Permian Basin, that accounts for a composite of intra-continental basins composed of Permian to Cenozoic sediments, which have accumulated to thicknesses around 10–12 kilometres (6–7.5 mi). The complex evolution of the basin takes place from the Permian to the Cenozoic, and is largely influenced by multiple stages of rifting, subsidence, and salt tectonic events. The North German Basin also accounts for a significant amount of Western Europe's natural gas resources, including one of the world's largest natural gas reservoir, the Groningen gas field.

<span class="mw-page-title-main">Kutai Basin</span>

The Kutai sedimentary basin extends from the central highlands of Borneo, across the eastern coast of the island and into the Makassar Strait. With an area of 60,000 km2, and depths up to 15 km, the Kutai is the largest and deepest Tertiary age basin in Indonesia. Plate tectonic evolution in the Indonesian region of SE Asia has produced a diverse array of basins in the Cenozoic. The Kutai is an extensional basin in a general foreland setting. Its geologic evolution begins in the mid Eocene and involves phases of extension and rifting, thermal sag, and isostatic subsidence. Rapid, high volume, sedimentation related to uplift and inversion began in the Early Miocene. The different stages of Kutai basin evolution can be roughly correlated to regional and local tectonic events. It is also likely that regional climate, namely the onset of the equatorial ever wet monsoon in early Miocene, has affected the geologic evolution of Borneo and the Kutai basin through the present day. Basin fill is ongoing in the lower Kutai basin, as the modern Mahakam River delta progrades east across the continental shelf of Borneo.

The Halibut Field is an oil field, within the Gippsland Basin offshore of the Australian state of Victoria. The oil field is located approximately 64 km offshore of southeastern Australia. The total area of this field is 26.9 km2 and is composed of 10 mappable units.

<span class="mw-page-title-main">Cook Inlet Basin</span>

The Cook Inlet Basin is a northeast-trending collisional forearc basin that stretches from the Gulf of Alaska into South central Alaska, just east of the Matanuska Valley. It is located in the arc-trench gap between the Alaska-Aleutian Range batholith and contains roughly 80,000 cubic miles of sedimentary rocks. These sediments are mainly derived from Triassic, Jurassic and Cretaceous sediments.

<span class="mw-page-title-main">Bolivar Coastal Fields</span>

The Bolivar Coastal Fields (BCF), also known as the Bolivar Coastal Complex, is located on the eastern margin of Lake Maracaibo, Venezuela. Bolivar Coastal Field is the largest oil field in South America with its 6,000-7,000 wells and forest of related derricks, stretches thirty-five miles along the north-east coast of Lake Maracaibo. They form the largest oil field outside of the Middle East and contain mostly heavy oil with a gravity less than 22 degrees API. Also known as the Eastern Coast Fields, Bolivar Coastal Oil Field consists of Tía Juana, Lagunillas, Bachaquero, Ceuta, Motatán, Barua and Ambrosio. The Bolivar Coast field lies in the Maracaibo dry forests ecoregion, which has been severely damaged by farming and ranching as well as oil exploitation. The oil field still plays an important role in production from the nation with approximately 2.6 million barrels of oil a day. It is important to note that the oil and gas industry refers to the Bolivar Coastal Complex as a single oilfield, in spite of the fact that the oilfield consists of many sub-fields as stated above.

<span class="mw-page-title-main">Nam Con Son Basin</span>

The Nam Con Son Basin formed as a rift basin during the Oligocene period. This basin is the southernmost sedimentary basin offshore of Vietnam, located within coordinates of 6°6'-9°45'N and 106°0-109°30'E in the East Vietnam Sea. It is the largest oil and gas bearing basin in Vietnam and has a number of producing fields.

<span class="mw-page-title-main">Geology of Lebanon</span>

The geology of Lebanon remains poorly studied prior to the Jurassic. The country is heavily dominated by limestone, sandstone, other sedimentary rocks, and basalt, defined by its tectonic history. In Lebanon, 70% of exposed rocks are limestone karst.

<span class="mw-page-title-main">Geology of Somaliland</span>

The geology of Somaliland is very closely related to the geology of Somalia. Somaliland is a de facto independent country within the boundaries that the international community recognizes as Somalia. Because it encompasses the former territory of British Somaliland, the region is historically better researched than former Italian Somaliland. Somaliland is built on more than 700 million year old igneous and metamorphic crystalline basement rock.. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate.

Kapuni is an onshore natural gas-condensate field located in the Taranaki Basin, a ~100,000 km2 partially-inverted rift basin on the Taranaki Peninsula in the North Island, New Zealand. Discovered in 1959 and brought into production in 1970, Kapuni remained New Zealand's only producing gas-condensate field until the offshore Maui gas field began production in 1979.

<span class="mw-page-title-main">Ryukyu Arc</span> Island arc between Kyushu and Taiwan

The Ryukyu Arc is an island arc which extends from the south of Kyushu along the Ryukyu Islands to the northeast of Taiwan, spanning about 1,200 kilometres (750 mi). It is located along a section of the convergent plate boundary where the Philippine Sea Plate is subducting northwestward beneath the Eurasian Plate along the Ryukyu Trench. The arc has an overall northeast to southwest trend and is located northwest of the Pacific Ocean and southeast of the East China Sea. It runs parallel to the Okinawa Trough, an active volcanic arc, and the Ryukyu Trench. The Ryukyu Arc, based on its geomorphology, can be segmented from north to south into Northern Ryukyu, Central Ryukyu, and Southern Ryukyu; the Tokara Strait separates Northern Ryukyu and Central Ryukyu at about 130˚E while the Kerama Gap separates Central Ryukyu and Southern Ryukyu at about 127 ˚E. The geological units of the arc include igneous, sedimentary, and metamorphic rocks, ranging from the Paleozoic to Cenozoic in age.

References

  1. 1 2 3 4 Baur, Jan; Sutherland, Rupert; Stern, Tim (2014). "Anomalous passive subsidence of deep-water sedimentary basins: a prearc basin example, southern New Caledonia Trough and Taranaki Basin, New Zealand". Basin Research. 26 (2): 242–268. Bibcode:2014BasR...26..242B. doi:10.1111/bre.12030. S2CID   129511770.
  2. 1 2 3 Higgs, K.E.; King, P.R.; Raine, J.I.; Sykes, R.; Browne, G.H.; Crouch, E.M. (2012). "Sequence stratigraphy and controls on reservoir sandstone distribution in an Eocene marginal marine-coastal plain fairway, Taranaki Basin, New Zealand". Marine and Petroleum Geology . 32 (1): 110–137. Bibcode:2012MarPG..32..110H. doi:10.1016/j.marpetgeo.2011.12.001.
  3. Walcott, R.I. (1987). "Geodetic Strain and the Deformational History of the North Island of New Zealand during the late Cainozoic". Philosophical Transactions of the Royal Society A. 373 (2037): 163–181. Bibcode:1987RSPTA.321..163W. doi:10.1098/rsta.1987.0009. S2CID   123398447.
  4. 1 2 3 4 5 Kroeger, K.F.; Funnell, R.H.; Nicol, A.; Fohrmann, M.; Bland, K.J.; King, P.R. (2013). "3D crustal-scale heat-flow regimes at a developing active margin (Taranaki Basin, New Zealand)". Tectonophysics. 591: 175–193. Bibcode:2013Tectp.591..175K. doi:10.1016/j.tecto.2012.04.005.
  5. 1 2 3 4 5 Webster, Mark; O'Conner, Stephen; Pindar, Bitrus; Swarbrick, Richard (2011). "Overpressures in the Taranaki Basin: Distribution, causes, and implications for exploration". AAPG Bulletin. 95 (3): 339–379. Bibcode:2011BAAPG..95..339W. doi:10.1306/06301009149.
  6. Sykes, R.; Volk, H.; George, S.C.; Ahmed, M. (2014). "Marine influence helps preserve the oil potential of coaly source rocks: Eocene Mangahewa Formation, Taranaki Basin, New Zealand". Organic Chemistry. 66: 140–163. Bibcode:2014OrGeo..66..140S. doi:10.1016/j.orggeochem.2013.11.005.
  7. 1 2 3 4 5 6 New Zealand Petroleum Basins (PDF). New Zealand: New Zealand Petroleum & Minerals : Ministry of Business. 2014. pp. 2–103. Archived from the original (PDF) on 2015-04-25. Retrieved 2015-02-18.
  8. 1 2 Armstrong, P.A.; Chapman, D.S. (1999). "Combining Tectonics and Thermal Fields in Taranaki Basin, New Zealand". Geothermics in Basin Analysis. Computer Applications in the Earth Sciences. pp. 151–176. doi:10.1007/978-1-4615-4751-8_8. ISBN   978-1-4613-7154-0.
  9. 1 2 3 Palmer, Julie; Geoff, Bulte (1991). "Taranaki Basin, New Zealand". M 52: Active Margin Basins. Vol. 135. pp. 261–282.
  10. Rainbow Warrior confronts Taranaki oil rigs’’, Greenpeace New Zealand, October 2, 2018.
  11. Muir, R.J; Bradshaw, J.D.; Weaver, S.D.; Laird, M.G. (2000). "The influence of basement structure on the evolution of the Taranaki Basin, New Zealand". Journal of the Geological Society. 157 (6): 1179–1185. Bibcode:2000JGSoc.157.1179M. doi:10.1144/jgs.157.6.1179. S2CID   130102221.
  12. Thrasher, G.P. (1992). "Last Cretaceous Geology of Taranaki Basin, New Zealand". Victoria University of Wellington: Thesis. hdl:10063/525.
  13. 1 2 3 4 5 6 7 Palmer, Julie (1985). "Pre-Miocene lithostratigraphy of Taranaki Basin, New Zealand". New Zealand Journal of Geology and Geophysics. 28 (2): 197–216. doi: 10.1080/00288306.1985.10422220 .
  14. Fohrmann, M.; et al. (2012). "Seismic reflection character, mapping and tectono-stratigraphic history of the Kupe area (4D Taranaki Project), south-eastern Taranaki Basin" (PDF). GNS Science Report. Retrieved 21 February 2015.
  15. 1 2 3 4 Collen, J.D.; Neall, V.E.; Johnston, J.H. (1985). "Sandstone xenoliths in the Pungarehu Formation, Western Taranaki, New Zealand: implications for petroleum exploration". Journal of the Royal Society of New Zealand. 15 (2): 201–212. doi: 10.1080/03036758.1985.10416844 .
  16. 1 2 Kamp, P.J.; Vonk, A.J.; Nelson, Campbell (2004). "Field Trip 5: Stratigraphic Architecture and Sedimentology of King Country and Eastern Taranaki Basins". Field Trip Guides, Geological Society of New Zealand, New Zealand Geophysical Society, 26th Annual Geothermal Workshop, Joint Geosciences Conference. New Zealand: Geological Society of New Zealand. pp. 43–86.
  17. Vonk, A.J.; Kamp, P.J. (2004). "Late Miocene-Early Pliocene Matemateāonga Formation in Eastern Taranaki Peninsula: A New 1:50,000 Geologic Map and Stratigraphic Framework". New Zealand Petroleum Conference Proceedings.