Hikurangi Margin

Last updated

Hikurangi Margin
Hikurangi Subduction Zone
NZ faults.png
The Hikurangi Margin is an active fault off the east coast of the North Island of New Zealand. This shows variation in displacement vector of Pacific Plate relative to the Kermadec Plate and Australian Plate along the boundary. The Kermadec Trench label would better read Hikurangi Trench at this position. The Kermadec Plate is not labelled but lies between the labels of the North Island Fault System and the Kermadec Trench in the picture.
Kermadec Plate map-fr.png
The relationship of the Kermadec Plate to its New Zealand portion whose eastern margin is the Hikurangi Subduction Zone and the Tonga Plate.
Etymology Hikurangi
Country New Zealand
Region North Island
Characteristics
Length300 km (190 mi)
Displacement 6 cm (2.4 in)/yr
Tectonics
Plate Indo-Australian
Status Active
Earthquakes Mw 8.2
Type Subduction
Age Miocene-Holocene
New Zealand geology database (includes faults)

The Hikurangi Margin (also known as the Hikurangi Subduction Zone) is New Zealand's largest subduction zone and fault. [1]

Contents

Tectonics

The Hikurangi Subduction Zone is an active subduction zone extending off the east coast of New Zealand's North Island, where the Pacific and Australian plates collide. [2] [3] The subduction zone where the Pacific Plate goes under the Kermadec Plate offshore of Gisborne accommodates approximately 6 cm/year (2.4 in/year) of plate movement while off the Wairarapa shore this decreases to perhaps as low as 2 cm/year (0.79 in/year). [1] It is the southern portion of the Tonga–Kermadec–Hikurangi subduction zone and its main feature is the Hikurangi Trench. The tectonics of this area can be most easily resolved by postulating between the Havre Trough to the east of the South Kermadec Ridge Seamounts, the Whakatane Graben and the Taupo Volcanic Zone on the North Island of New Zealand there is a continuation of the Tonga micro-plate into the Kermadec microplate which probably extends to Cook Strait. [4] The on land active fault systems would be consistent with the Kermadec Plate's unclear south western boundary being the North Island Fault System. The Kermadec Plate - Pacific Plate eastern boundary is the Hikurangi-Kermadec trench. [4]

The Hikurangi Plateau, a remnant of a large igneous province is being subducted under the North Island at the margin currently. The subducting slab's Wadati–Benioff zone is over 200 km (120 mi) deep at Tauranga and Mount Taranaki and more than 75 km (47 mi) deep under the Taupō Volcanic Zone. [5]

Earthquakes

Earthquakes of up to Mw 8.2 have been recorded on the Hikurangi Margin, generating local tsunamis, and earthquakes in the 9.0M range are thought to be possible. [6] The Ruatoria debris avalanche originated on the north part of the subduction zone and probably occurred around 170,000 years ago. [7] Multiple uplift earthquakes will have occurred in the locked areas of the fault but a good historical record does not yet exist.

Slow slip events

There are well characterised now slow slip events across the Hikurangi Margin [1] Hikurangi Margin slow slip events occur up to yearly at a shallow depth of less than 10 km (6.2 mi), and last for up to 6 weeks relieving stress on much of the fault. [8] For example the series of slow slip events between 2013-2016 involved moment release of approximately Mw7.4. [9] At least one of the well characterised events was very close to the trench. [10] On land parallel to the predicted fault line of the Hikurangi Margin are active faults which are not fully characterised and include the Parkhill Fault Zone near Cape Kidnappers, the Maraetotara Fault Zone, and the Flat Point Fault. The slow slip activity has been associated with on land a mud volcano eruption causing a significant landslip. [11]

Modelling events

Because it has been possible to examine the mechanical properties of the subducted ocean floor clays recovered by drilling into the subducted rock, it has been possible to develop a model that may explain both the slow slip events but also why large and relatively deep earthquake ruptures are propagated into the shallow areas of the subduction zone thus displacing the ocean floor and generating tsunamis. [12] The model suggests that shallow-depth subducted water-saturated clay-rich sediments, promote earthquake rupture propagation and slip. [12]

Risk

The Hikurangi Margin has the potential to produce notable earthquakes. Some significant earthquakes are:

There have been ten possible large subduction earthquakes identified over the past 7000 years before the above historic records along the Hikurangi margin. [16] The last such pre history earthquake occurred 568 ± 25 [16] years ago in the southern Hikurangi margin. [17] An earthquake associated with a tsunami and at least 354 km (220 mi) of the margin rupturing, occurred between 943 and 888years ago. [17]

Related Research Articles

<span class="mw-page-title-main">Ring of Fire</span> Region around the rim of the Pacific Ocean where many volcanic eruptions and earthquakes occur

The Ring of Fire is a tectonic belt, about 40,000 km (25,000 mi) long and up to about 500 km (310 mi) wide, which circumscribes the Pacific Ocean. It contains between 750 and 915 volcanoes, around two-thirds of the world total, and 90% of the world's earthquakes, including 81% of its largest, take place within the belt.

<span class="mw-page-title-main">Japan Trench</span> Oceanic trench part of the Pacific Ring of Fire off northeast Japan

The Japan Trench is an oceanic trench part of the Pacific Ring of Fire off northeast Japan. It extends from the Kuril Islands to the northern end of the Izu Islands, and is 8,046 metres (26,398 ft) at its deepest. It links the Kuril–Kamchatka Trench to the north and the Izu–Ogasawara Trench to its south with a length of 800 kilometres (497 mi). This trench is created as the oceanic Pacific plate subducts beneath the continental Okhotsk Plate. The subduction process causes bending of the down going plate, creating a deep trench. Continuing movement on the subduction zone associated with the Japan Trench is one of the main causes of tsunamis and earthquakes in northern Japan, including the megathrust Tōhoku earthquake and resulting tsunami that occurred on 11 March 2011. The rate of subduction associated with the Japan Trench has been recorded at about 7.9–9.2 centimetres (3.1–3.6 in)/yr.

Megathrust earthquakes occur at convergent plate boundaries, where one tectonic plate is forced underneath another. The earthquakes are caused by slip along the thrust fault that forms the contact between the two plates. These interplate earthquakes are the planet's most powerful, with moment magnitudes (Mw) that can exceed 9.0. Since 1900, all earthquakes of magnitude 9.0 or greater have been megathrust earthquakes.

<span class="mw-page-title-main">Alpine Fault</span> Right-lateral strike-slip fault, that runs almost the entire length of New Zealands South Island.

The Alpine Fault is a geological fault that runs almost the entire length of New Zealand's South Island, being about 600 km (370 mi). long, and forms the boundary between the Pacific Plate and the Australian Plate. The Southern Alps have been uplifted on the fault over the last 12 million years in a series of earthquakes. However, most of the motion on the fault is strike-slip, with the Tasman district and West Coast moving north and Canterbury and Otago moving south. The average slip rates in the fault's central region are about 38 mm (1.5 in) a year, very fast by global standards. The last major earthquake on the Alpine Fault was in about 1717 AD with a great earthquake magnitude of Mw8.1. The probability of another one occurring within the next 50 years is estimated at 75 percent.

<span class="mw-page-title-main">Kamchatka earthquakes</span> Earthquakes in the Kamchatka Peninsula, far eastern Russia

Many major earthquakes have occurred in the region of the Kamchatka Peninsula in far eastern Russia. Events in 1737, 1923 and 1952, were megathrust earthquakes and caused tsunamis. There are many more earthquakes and tsunamis originating from the region.

<span class="mw-page-title-main">2007 Gisborne earthquake</span> Earthquake in New Zealand

The 2007 Gisborne earthquake occurred under the Pacific Ocean about 50 kilometres (31 mi) off the eastern coast of New Zealand's North Island at 8:55 pm NZDT on 20 December. The tremor had a moment magnitude of 6.7 and maximum Mercalli intensity of VII, and affected the city of Gisborne, but was felt widely across the country from Auckland in the north to Dunedin in the south.

<span class="mw-page-title-main">Hikurangi Plateau</span> A large igneous province and subsurface plateau in the Pacific Ocean

The Hikurangi Plateau is an oceanic plateau in the South Pacific Ocean east of the North Island of New Zealand. It is part of a large igneous province (LIP) together with Manihiki and Ontong Java, now located 3,000 km (1,900 mi) and 3,500 km (2,200 mi) north of Hikurangi respectively. Mount Hikurangi, in Māori mythology the first part of the North Island to emerge from the ocean, gave its name to the plateau.

The 1992 Nicaragua earthquake occurred off the coast of Nicaragua at 6:16 p.m. on 1 September. Some damage was also reported in Costa Rica. At least 116 people were killed and several more were injured. The earthquake was caused by movement on a convergent plate boundary. It created a tsunami disproportionately large for its surface wave magnitude.

The 1843 Whanganui earthquake occurred on 8 July at 16:45 local time with an estimated magnitude of 7.5 on the Mw scale. The maximum perceived intensity was IX (Violent) on the Mercalli intensity scale, and possibly reaching X (Extreme). The epicentre is estimated to have been within a zone extending 50 km northeast from Whanganui towards Taihape. GNS Science has this earthquake catalogued and places the epicentre 35 km east of Taihape, near the border of Hawke's Bay. This was the first earthquake in New Zealand over magnitude 7 for which written records exist, and the first for which deaths were recorded.

The 1995 Antofagasta earthquake occurred on July 30 at 05:11 UTC with a moment magnitude of 8.0 and a maximum Mercalli intensity of VII. The Antofagasta Region in Chile was affected by a moderate tsunami, with three people killed, 58 or 59 injured, and around 600 homeless. Total damage from the earthquake and tsunami amounted to $1.791 million.

<span class="mw-page-title-main">North Island Fault System</span> Fault zone of the east coast of New Zealands North Island

The North Island Fault System (NIFS) is a set of southwest–northeast trending seismically-active faults in the North Island of New Zealand that carry much of the dextral strike-slip component of the oblique convergence of the Pacific Plate with the Australian Plate. However despite at least 3 km (1.9 mi) of uplift of the axial ranges in the middle regions of the fault system during the last 10 million years most of the shortening on this part of the Hikurangi Margin is accommodated by subduction.

<span class="mw-page-title-main">Makran Trench</span> Subduction zone in the Gulf of Oman

The Makran Trench is the physiographic expression of a subduction zone along the northeastern margin of the Gulf of Oman adjacent to the southwestern coast of Balochistan of Pakistan and the southeastern coast of Iran. In this region the oceanic crust of the Arabian Plate is being subducted beneath the continental crust of the Eurasian Plate.

The 2014 Eketāhuna earthquake struck at 3:52 pm on 20 January, centred 15 km east of Eketāhuna in the south-east of New Zealand's North Island. It had a maximum perceived intensity of VII on the Mercalli intensity scale. Originally reported as magnitude 6.6 on the Richter Scale, the earthquake was later downgraded to a magnitude of 6.2. A total of 1112 aftershocks were recorded, ranging between magnitudes 2.0 and 4.9 on the Richter Scale.

The 1863 Hawke's Bay earthquake was a devastating magnitude 7.5 Mw earthquake that struck near the town of Waipukurau on 23 February 1863. It remained the single largest earthquake to strike Hawke's Bay until 1931, where a magnitude 7.8 quake leveled much of Napier and Hastings, and killed 256 people.

The 1904 Cape Turnagain earthquake struck 10 kilometres (6.2 mi) north of Cape Turnagain on the morning of 9 August with a magnitude estimated at 6.8 Ms and 7.0–7.2 Mw It was felt throughout the North Island and upper South Island, with many communities within a 500 kilometres (310 mi) radius reporting noticeable ground shaking. Heavy damage occurred to the landscape and personal property and one man died. It was the largest to strike New Zealand since the 7.0 Mw  North Canterbury earthquake in 1888.

<span class="mw-page-title-main">Laura Wallace</span> American geophysicist

Laura Martin Wallace is a geodetic principal scientist who works between the University of Texas at Austin and GNS Science in New Zealand. She was elected Fellow of the Royal Society Te Apārangi in 2018.

<span class="mw-page-title-main">2021 Chignik earthquake</span> 7th largest earthquake in the US

An earthquake occurred off the coast of the Alaska Peninsula on July 28, 2021, at 10:15 p.m. local time. The large megathrust earthquake had a moment magnitude of 8.2 according to the United States Geological Survey (USGS). A tsunami warning was issued by the National Oceanic and Atmospheric Administration (NOAA) but later cancelled. The mainshock was followed by a number of aftershocks, including three that were of magnitude 5.9, 6.1 and 6.9 respectively.

The 2021 South Sandwich Islands earthquakes were a pair of powerful earthquakes, followed by many strong aftershocks which struck along the South Sandwich Trench in August 2021. The quakes measured 7.5 and 8.1 on the moment magnitude scale, according to the United States Geological Survey. The mainshock is tied with another event in 1929 as the largest earthquake ever recorded in this region, and is tied with the 2021 Kermadec Islands earthquake as the second largest earthquake of 2021.

In 1914, two earthquakes shook the upper North Island of New Zealand; on Wednesday 7 October and Wednesday 28 October. They were large and shallow, with their epicentres close together northwest of Ruatoria in the Gisborne District. The earthquakes were felt strongly throughout the East Cape area, most noticeably in areas east of the epicentre such as Waipiro Bay, with a large amount of damage occurring in Tokomaru Bay in particular. One person was killed by a landslide near Cape Runaway.

<span class="mw-page-title-main">New Hebrides Trench</span> Oceanic trench in the southern Pacific Ocean

The New Hebrides Trench is an oceanic trench which is over 7.1 km (4.4 mi) deep in the Southern Pacific Ocean. It lies to the northeast of New Caledonia and the Loyalty Islands, to the southwest of Vanuatu, east of Australia, and south of Papua New Guinea and the Solomon Islands. The trench was formed as a result of a subduction zone. The Australian Plate is being subducted under the New Hebrides Plate causing volcanism which produced the Vanuatu archipelago.

References

  1. 1 2 3 Wallace, Laura; Clark, Kate (29 November 2017). "Hikurangi subduction zone - GeoNet: News". GeoNet. GNS Science. Retrieved 29 August 2022. The Hikurangi subduction zone (sometimes referred to as the Hikurangi subduction margin) is New Zealand's largest fault
  2. Clark et al. 2019 , Introduction
  3. "Hikurangi Margin". The University of Waikato. Archived from the original on 29 January 2015. Retrieved 19 May 2015.
  4. 1 2 Bird, Peter (2003). "An updated digital model of plate boundaries". Geochemistry, Geophysics, Geosystems. 4 (3): 1027. Bibcode:2003GGG.....4.1027B. doi: 10.1029/2001GC000252 . S2CID   9127133.
  5. Clark et al. 2019 , Figure 1
  6. Wallace, Laura M.; Cochran, Ursula A. (June 2014). "Earthquake and Tsunami Potential of the Hikurangi Subduction Thrust, New Zealand: Insights from Paleoseismology, GPS, and Tsunami Modeling". Oceanography . 27 (2): 104–117. doi: 10.5670/oceanog.2014.46 .
  7. Collot, John-Yves (10 September 2001). "The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: Result of oblique seamount subduction" (PDF). Journal of Geophysical Research: Solid Earth . 106 (B9): 19, 271–19, 297. Bibcode:2001JGR...10619271C. doi: 10.1029/2001JB900004 .
  8. "Slow Slip Watch:Hikurangi". GeoNet. GNS Science. 2022. Retrieved 29 August 2022. Hikurangi Margin slow slip events occur every 1-2 years at a shallow depth (<10km), and last for 2-6 weeks
  9. Woods, Katherine; Wallace, Laura; Hamling, Ian; Savage, Martha; Williams, Charles (2021). Assessing the interplay between deep subduction interface slow slip events and large local earthquakes at the Hikurangi subduction zone, New Zealand. AGU Fall Meeting. Bibcode:2021AGUFM.G25B0364W . Retrieved 29 August 2022.
  10. Wallace, LM; Webb, SC; Ito, Y; Mochizuki, K; Hino, R; Henrys, S; Schwartz, SY; Sheehan, AF (2016). "Slow slip near the trench at the Hikurangi subduction zone, New Zealand". Science. 352 (6286): 701–4. Bibcode:2016Sci...352..701W. doi: 10.1126/science.aaf2349 . PMID   27151867. S2CID   206647253.
  11. Leighton, Alex; Brook, Martin S.; Cave, Murry; Rowe, Michael C.; Stanley, Alec; Tunnicliffe, Jon F. (2022). "Engineering geomorphological reconnaissance of the December 2018 Waimata Valley mud volcano eruption, Gisborne, New Zealand". Quarterly Journal of Engineering Geology and Hydrogeology. 55 (4). Bibcode:2022QJEGH..55..149L. doi:10.1144/qjegh2021-149.
  12. 1 2 Aretusini, S; Meneghini, F; Spagnuolo, E; Harbord, CW; Di Toro, G (2021). "Fluid pressurisation and earthquake propagation in the Hikurangi subduction zone". Nature Communications. 12 (2481): 2481. arXiv: 2101.04336 . Bibcode:2021NatCo..12.2481A. doi:10.1038/s41467-021-22805-w. hdl: 11577/3400836 . PMC   8087711 . PMID   33931641.
  13. Downes, G; Barberopoulou, A; Cochran, U; Clark, K; Scheele, F (2017). "The New Zealand Tsunami Database: Historical and Modern Records:Source Event 70, 26/03/1947, 8:32:00 am". Seismological Research Letters. 88 (2): 342-353. doi:10.1785/0220160135.
  14. "M 7.4 Hawke's Bay Tue, Feb 3 1931". GeoNet. Retrieved 29 August 2022.
  15. "Story:M 7.4 Hawke's Bay Tue, Feb 3 1931". www.geonet.org.nz. GNS Science. Retrieved 29 August 2022.
  16. 1 2 Clark et al. 2019 , Abstract
  17. 1 2 Clark et al. 2019 , Table 3, Figure 12
source