Telluromethionine

Last updated
Telluromethionine
L-Telluromethionine.svg
Names
IUPAC name
(2S)-2-amino-4-methyltellanylbutanoic acid
Other names
TeMet
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C5H11NO2Te/c1-9-3-2-4(6)5(7)8/h4H,2-3,6H2,1H3,(H,7,8)/t4-/m0/s1 Yes check.svgY
  • L:C[Te]CCC(C(=O)O)N
Properties
C
5
H
11
NO
2
Te
Molar mass 244.7 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN (what is  Yes check.svgYX mark.svgN ?)

Telluromethionine (sometimes shortened to TeMet [1] ) is a rare and natural amino acid. [2] It is a heavy analog of methionine and selenomethionine containing tellurium. Telluromethionine has been suggested as a probe for structural biochemistry, as it can be incorporated into proteins and used for X-ray crystallography and NMR measurements. [3]

In aqueous solutions, telluromethioning oxidizes to a telluroxide, but can be recovered by use of DTT. Telluromethionine is not very stable in wheat germ extract, which impacts its translation rate. In the extract, elemental tellurium seems to form, suggesting a degradation mechanism, but this is not well understood. [1] However, enriching proteins with tellurium in auxotrophic E. coli was successfully used to express several recombinant proteins. [4]

Related Research Articles

<span class="mw-page-title-main">Amino acid</span> Organic compounds containing amine and carboxylic groups

Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 appear in the genetic code of life.

<span class="mw-page-title-main">Protein</span> Biomolecule consisting of chains of amino acid residues

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.

<span class="mw-page-title-main">Peptide bond</span> Covalent chemical bond between amino acids in a peptide or protein chain

In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 of one alpha-amino acid and N2 of another, along a peptide or protein chain.

<span class="mw-page-title-main">Proteolysis</span> Breakdown of proteins into smaller polypeptides or amino acids

Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion.

<span class="mw-page-title-main">Selenocysteine</span> Chemical compound

Selenocysteine is the 21st proteinogenic amino acid. Selenoproteins contain selenocysteine residues. Selenocysteine is an analogue of the more common cysteine with selenium in place of the sulfur.

Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group -NH
2
but is rather a secondary amine. The secondary amine nitrogen is in the protonated form (NH2+) under biological conditions, while the carboxyl group is in the deprotonated −COO form. The "side chain" from the α carbon connects to the nitrogen forming a pyrrolidine loop, classifying it as a aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it from the non-essential amino acid L-glutamate. It is encoded by all the codons starting with CC (CCU, CCC, CCA, and CCG).

<span class="mw-page-title-main">Methionine</span> Sulfur-containing amino acid

Methionine is an essential amino acid in humans.

<span class="mw-page-title-main">Proteinogenic amino acid</span> Amino acid that is incorporated biosynthetically into proteins during translation

Proteinogenic amino acids are amino acids that are incorporated biosynthetically into proteins during translation. The word "proteinogenic" means "protein creating". Throughout known life, there are 22 genetically encoded (proteinogenic) amino acids, 20 in the standard genetic code and an additional 2 that can be incorporated by special translation mechanisms.

The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the amine group is bonded to the carboxylic group of another amino acid, making it a chain. That leaves a free carboxylic group at one end of the peptide, called the C-terminus, and a free amine group on the other end called the N-terminus. By convention, peptide sequences are written N-terminus to C-terminus, left to right (in LTR writing systems). This correlates the translation direction to the text direction, because when a protein is translated from messenger RNA, it is created from the N-terminus to the C-terminus, as amino acids are added to the carboxyl end of the protein.

<span class="mw-page-title-main">Auxotrophy</span> Inability to synthesize an organic compound required for growth

Auxotrophy is the inability of an organism to synthesize a particular organic compound required for its growth. An auxotroph is an organism that displays this characteristic; auxotrophic is the corresponding adjective. Auxotrophy is the opposite of prototrophy, which is characterized by the ability to synthesize all the compounds needed for growth.

<span class="mw-page-title-main">Protein structure</span> Three-dimensional arrangement of atoms in an amino acid-chain molecule

Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a repeating unit of a polymer. Proteins form by amino acids undergoing condensation reactions, in which the amino acids lose one water molecule per reaction in order to attach to one another with a peptide bond. By convention, a chain under 30 amino acids is often identified as a peptide, rather than a protein. To be able to perform their biological function, proteins fold into one or more specific spatial conformations driven by a number of non-covalent interactions, such as hydrogen bonding, ionic interactions, Van der Waals forces, and hydrophobic packing. To understand the functions of proteins at a molecular level, it is often necessary to determine their three-dimensional structure. This is the topic of the scientific field of structural biology, which employs techniques such as X-ray crystallography, NMR spectroscopy, cryo-electron microscopy (cryo-EM) and dual polarisation interferometry, to determine the structure of proteins.

<span class="mw-page-title-main">Selenomethionine</span> Chemical compound

Selenomethionine (SeMet) is a naturally occurring amino acid. The L-selenomethionine enantiomer is the main form of selenium found in Brazil nuts, cereal grains, soybeans, and grassland legumes, while Se-methylselenocysteine, or its γ-glutamyl derivative, is the major form of selenium found in Astragalus, Allium, and Brassica species. In vivo, selenomethionine is randomly incorporated instead of methionine. Selenomethionine is readily oxidized.

Cyanogen bromide is the inorganic compound with the formula (CN)Br or BrCN. It is a colorless solid that is widely used to modify biopolymers, fragment proteins and peptides, and synthesize other compounds. The compound is classified as a pseudohalogen.

<span class="mw-page-title-main">Felinine</span> Chemical compound

Felinine, also known as (R)-2-amino-3-(4-hydroxy-2-methylbutan-2-ylthio)propanoic acid, is an amino acid found in cat urine and a precursor via microbial lyase of the putative cat pheromone and thiol called 3-mercapto-3-methylbutan-1-ol (MMB). Felinine is excreted by some Felidae species, including bobcats, Chinese desert cats, the kodkod, and domestic cats.

<span class="mw-page-title-main">Expanded genetic code</span> Modified genetic code

An expanded genetic code is an artificially modified genetic code in which one or more specific codons have been re-allocated to encode an amino acid that is not among the 22 common naturally-encoded proteinogenic amino acids.

Hydrophobicity scales are values that define the relative hydrophobicity or hydrophilicity of amino acid residues. The more positive the value, the more hydrophobic are the amino acids located in that region of the protein. These scales are commonly used to predict the transmembrane alpha-helices of membrane proteins. When consecutively measuring amino acids of a protein, changes in value indicate attraction of specific protein regions towards the hydrophobic region inside lipid bilayer.

<span class="mw-page-title-main">Norleucine</span> Chemical compound

Norleucine (abbreviated as Nle) is an amino acid with the formula CH3(CH2)3CH(NH2)CO2H. A systematic name for this compound is 2-aminohexanoic acid. The compound is an isomer of the more common amino acid leucine. Like most other α-amino acids, norleucine is chiral. It is a white, water-soluble solid.

<span class="mw-page-title-main">Non-proteinogenic amino acids</span> Are not naturally encoded in the genome

In biochemistry, non-coded or non-proteinogenic amino acids are distinct from the 22 proteinogenic amino acids, which are naturally encoded in the genome of organisms for the assembly of proteins. However, over 140 non-proteinogenic amino acids occur naturally in proteins and thousands more may occur in nature or be synthesized in the laboratory. Chemically synthesized amino acids can be called unnatural amino acids. Unnatural amino acids can be synthetically prepared from their native analogs via modifications such as amine alkylation, side chain substitution, structural bond extension cyclization, and isosteric replacements within the amino acid backbone. Many non-proteinogenic amino acids are important:

<span class="mw-page-title-main">Nediljko Budisa</span>

Nediljko "Ned" Budisa is a Croatian biochemist, professor and holder of the Tier 1 Canada Research Chair (CRC) for chemical synthetic biology at the University of Manitoba. As pioneer in the areas of genetic code engineering and chemical synthetic biology (Xenobiology), his research has a wide range of applications in biotechnology and engineering biology in general. Being highly interdisciplinary, it includes bioorganic and medical chemistry, structural biology, biophysics and molecular biotechnology as well as metabolic and biomaterial engineering. He is the author of the only textbook in his research field: “Engineering the genetic code: expanding the amino acid repertoire for the design of novel proteins”.

<span class="mw-page-title-main">L-Photo-methionine</span> Chemical compound

L-Photo-methionine is a photo-reactive amino acid derivative of L-methionine that was synthetically formed in 2005. Protein are long polymer chains of amino acids; which can range in various structures and sizes. Proteins can interact with each other and with these interactions, affects cellular interactions and pathways. Such interactions; in viral fusion and in growth-factor signaling looked promising for antiviral or anti-cancer drugs, so research must be done to understand the interactions. With that, research has begun to prove that proteins function in supramolecular complexes compared to isolated entities. So, scientists Monika Suchanek, Anna Radzikowski, and Christoph Thiele researched that the direct way to study these interactions in the natural environment better was to create a new way of photo-cross-linking proteins; which led to the synthesis of L-photo-methionine and in that same study, L-photo-leucine.

References

  1. 1 2 Ogra, Yasumitsu; Kitaguchi, Takashi; Suzuki, Noriyuki; Suzuki, Kazuo T. (2008-01-01). "In vitro translation with [34S]-labeled methionine, selenomethionine, and telluromethionine". Analytical and Bioanalytical Chemistry. 390 (1): 45–51. doi:10.1007/s00216-007-1546-y. ISSN   1618-2650. PMID   17846751.
  2. Moroder, Luis; Musiol, Hans-Jürgen (2019-12-19). "Amino acid chalcogen analogues as tools in peptide and protein research". Journal of Peptide Science. 26 (2). Wiley: e3232. doi:10.1002/psc.3232. hdl: 21.11116/0000-0005-A122-E . ISSN   1075-2617. PMID   31856429.
  3. Boles, J O; Lebioda, L; Dunlap, R B; Odom, J D (1995-01-01). "Telluromethionine in structural biochemistry". SAAS Bulletin, Biochemistry and Biotechnology. 8: 29–34. ISSN   1052-6781. PMID   7546573.
  4. Budisa, Nediljko; Karnbrock, Wilhelm; Steinbacher, Stefan; Humm, Andreas; Prade, Lars; Neuefeind, Torsten; Moroder, Luis; Huber, Robert (1997-07-25). "Bioincorporation of telluromethionine into proteins: a promising new approach for X-ray structure analysis of proteins11Edited by K. Nagai". Journal of Molecular Biology. 270 (4): 616–623. doi:10.1006/jmbi.1997.1132. ISSN   0022-2836. PMID   9245591.